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Introduction to Supersymmetry - Exercises

1. BPS supermultiplets

Derive the representations of the superalgebra with N > 1 supersym-
metries and central extensions:

{QI
α, Q̄

J
α̇} = 2σµαα̇Pµδ

IJ ,

{QI
α, Q

J
β} = ǫαβZ

IJ , ZIJ = −ZJI .

It is best to choose a particular (simple) form for the central charge
ZIJ matrix (block diagonal with entries given by the eigenvalues).

Show that there is a lower bound on the mass. Then, show that the
“length” of the supermultiplets varies if there are some relations be-
tween the mass and the eigenvalues of the central charge matrix.

For a reference, see A. Bilal, arXiv:hep-th/0101055, section 3.4.

[The name BPS comes from Bogomol’nyi-Prasad-Sommerfield and the
theory of monopoles, in which relations between the mass and the
charge also appear. Such BPS objects and the shortening of their su-
permultiplets are extremely important in establishing non-perturbative
dualities in string theory.]

2. The supercurrent: a Noether current for supersymmetry

Consider the Wess-Zumino model for a scalar multiplet, in compo-
nents. Find the Noether current associated to supersymmetry trans-
formations, both for the free and for the interacting theory (for the
latter, one may use the fact that interaction and mass terms descend
from a superpotential).

Recall that the definition of the Noether current is:

ǫJµ + ǭJ̄µ =
∑

X=φ,ψ,f

∂L
∂(∂µX)

δX − V µ,

where V µ is such that upon a supersymmetry transformation,

δL = ∂µV
µ.

For a reference, see e.g. S. P. Martin, “A Supersymmetry primer,”
arXiv:hep-ph/9709356, section 3.

[If one is left hungry after this exercise, she/he may continue by apply-
ing the Noether method, leading to the coupling to the gravitino and
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eventually to supergravity. It can then be shown that the supercurrent
itself transforms under supersymmetry into the energy-momentum ten-
sor T µν (which couples to the graviton).]

3. Non-linear Sigma models and Kähler potential

Consider the manifestly supersymmetric action

∫
d2θd2θ̄ K(Φi, Φ̄̄) +

∫
d2θ W (Φi) + c.c.,

with K(zi, z
∗

̄ ) a real function of N complex variables zi. Taking

Φi = φi +
√
2θψi + θ2fi,

develop the action in components, also solving in the process the equa-
tions of motion for the auxiliary fields.

For a reference, see A. Bilal, arXiv:hep-th/0101055, section 7.1.

[This kind of models, which are not necessarily renormalizable, arises
when considering effective theories, i.e. theories which are valid only
for energies lower than a certain scale. The effects of the new physics
that kicks in at higher energies are encoded in the non-linearities of the
effective theory. What is shown here is that the “target space” has the
geometry of a Kähler manifold due to supersymmetry.]

4. Moduli space of SQCD

Describe the moduli space of SU(Nc) SQCD with Nf flavors, as Nf is
varied with respect to Nc. In particular:

(i) Give the most general solution (up to gauge and global symmetry
rotations) of the D-flatness equations for Nf < Nc and for Nf ≥
Nc.

(ii) For the gauge invariant description of the moduli space, find the
chiral gauge invariant operators in the cases Nf < Nc, Nf = Nc,
Nf = Nc + 1 and Nf > Nc + 1. Find in which cases the oper-
ators satisfy relations among them. Check against the expected
dimension of the moduli space.

For a reference, see e.g. M. A. Shifman, “Nonperturbative dynamics in
supersymmetric gauge theories,” Prog. Part. Nucl. Phys. 39 (1997) 1
[arXiv:hep-th/9704114], section 3.1.

[These classical moduli spaces have non-trivial quantum corrections
when the strongly coupled dynamics of SQCD is taken into account.]
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5. Supertrace theorem for a SUSY breaking non-linear Sigma

model

Consider a model like those in Exercise 3, which breaks SUSY sponta-
neously (i.e. one cannot set Wi = 0 for all i at the same time). Com-
pute the difference of squared masses of bosons and fermions around
the SUSY breaking vacuum in this more general set up and verify that
now the supertrace no longer vanishes, but is rather determined by the
non-trivial Kähler potential.

[This should make it obvious why the supertrace theorem only rules
out tree-level (classical) spontaneous SUSY breaking in the SSM, but
does not affect other scenarios based on radiative corrections and/or
supergravity.]

6. A minimal model of gauge mediation of SUSY breaking

We consider a theory with a “visible” sector (mimicking the MSSM)
composed of massless SQED:

Lvis =
∫
d2θd2θ̄ (Q̄e2gVQ+ Q̃e−2gV ¯̃

Q)− 1

4

∫
d2θ WαWα + c.c.,

and a “messenger” sector coupled to a spurion

Lmess =
∫
d2θd2θ̄ (Φ̄e2gVΦ + Φ̃e−2gV ¯̃Φ) +

∫
d2θ XΦΦ̃ + c.c.

The spurion has a VEV given by

X =M + θ2F.

It thus summarizes the SUSY breaking taking place in a “hidden” sec-
tor, which we assume to be responsible for the value of F .

In this model, show that:

(i) The messengers have a split spectrum at tree level with a vanishing
supertrace.

(ii) The gaugino acquires a mass at one-loop level. Write the Feynman
diagram that is responsible for it and compute it. (It is best done
using Feynman rules for Weyl fermions. These are easily derived
from the path integral.)

(ii) The sfermions (the scalar components of Q and Q̃) acquire a mass
at two-loops. Write the Feynman diagrams contributing to it.
Compute the overall contribution to the mass (paying attention
for instance to the sign!). Is the supertrace vanishing also in the
visible matter sector?
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Observe the pattern of visible sector soft masses thus generated.

For a reference, see e.g. P. Meade, N. Seiberg and D. Shih, “Gen-
eral Gauge Mediation,” Prog. Theor. Phys. Suppl. 177 (2009) 143
[arXiv:0801.3278 [hep-ph]], section 3 and appendix A.

[This simple model of mediation of SUSY breaking is called “gauge me-
diation” because the gauge multiplet of the visible sector is the first one
to acquire non-SUSY masses by radiative corrections. It then generates
non-SUSY masses in the matter sector by further radiative corrections.
This model is one of the most popular ones and can be generalized in
many ways.]

7. The Goldstino from the supercurrent, and its effective La-

grangian

Explore the relation between the Goldstino, the massless fermion re-
lated to spontaneous breaking of SUSY, to the supercurrent, in a way
similar to what is done for the Goldstone boson, as for instance in
J. Goldstone, A. Salam and S. Weinberg, “Broken Symmetries,” Phys.
Rev. 127 (1962) 965.

This approach shows that the existence and the masslessness of the
Goldstino is independent on the classical Lagrangian description of the
SUSY breaking, and is thus applicable also to strongly coupled situa-
tions.

The Goldstino effective Lagrangian and its couplings to matter can be
determined universally through this approach (again, see e.g. S. P. Mar-
tin, “A Supersymmetry primer,” arXiv:hep-ph/9709356, section 7.5).

Note that the linear Goldstino couplings to matter can be presented
either in derivative or, after using the equations of motion (or equiv-
alently, field redefinitions), in non-derivative form. In the latter form,
they are explicitly proportional to the soft masses that are present in
the SUSY breaking vacuum. Show that the same couplings can be de-
rived by promoting to a dynamical superfield X the spurion encoding
the soft terms, in such a way that

X = · · ·+
√
2θG+ θ2F

where G is the Goldstino and F the SUSY breaking VEV. (For a re-
cent discussion of the Goldstino superfield, see Z. Komargodski and
N. Seiberg, “From Linear SUSY to Constrained Superfields,” JHEP
0909 (2009) 066 [arXiv:0907.2441 [hep-th]].)
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