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Chapter 1

Introduction

Disclaimer (2009): These notes are being written in the beginning of 2009.
LHC should start running hopefully within a year. Then, it is likely that some
data concerning supersymmetry will soon start to be available. The most
favourable outcome is a Nobel prize awarded already in 2011. Then there
would be little need to motivate further the subject of these lectures. On the
other hand the outcome could be the opposite, ruling out supersymmetry
in the (accessible) real world. Then these lectures are concerned with a
beautiful mathematical construction which allows us to better understand
the quantum properties of field theories. Of course, it is most likely that the
real outcome of LHC will be just half way between the two options above..

Disclaimer (2015): Well, it turned out to be, of course, in the middle. SUSY
is not ruled out, but its most straightforward versions are having a hard time,
in particular to justify their usefulness.. Stay tuned!

1.1 Motivating supersymmetry

Supersymmetry is an organizing principle for quantum field theories which
addresses both theoretical and technical aspects of them.

In all generality, symmetries (both internal and space-time) implement
constraints on the structure of the theory, and on its quantum corrections.
In particular, they help in answering the following questions:

• Why is the spectrum as it is?

• Why are there some couplings, while others are vanishing?

7



8 CHAPTER 1. INTRODUCTION

• Why some quantities are much smaller than others (i.e. there are hi-
erarchies)?

Supersymmetry is a very powerful symmetry, which extends the usual
Poincaré space-time symmetry. In this sense it is more powerful than a
global internal symmetry. Particles are commonly divided into bosons (of
integer spin, such as scalars and vectors) and fermions (of half-integer spin,
which herein will always be spin 1/2). Supersymmetry (also called SUSY)
relates these two kinds of particles. It must then mix non-trivially with
the Poincaré space-time symmetry since it relates particles which belong to
different representations of the Lorentz group, since the latter are denoted
by their spin.

As we will see, SUSY implements strong constraints on the spectrum and
on the couplings of a field theory. Thus, it goes towards the goal of formu-
lating a unique theory of all interactions, where everything is constrained
and nothing is left to (arbitrary) choice. Actually, it goes very close to this
aim when gravity is taken into account and the theory becomes the one of
supergravity. Moreover, if one wants a setting in which gravity is consis-
tently quantized, one has to resort to string theory. It is amusing to note
that in turn, string theories are fully consistent only when supersymmetry
is present–one then talks of superstring theory. Actually, it is really in this
context that SUSY appeared first in physics, during the early 70s.

At a more technical level, SUSY helps also in addressing the question
of quantum corrections and hierarchies, which is related to the notion of
naturalness, as opposite to fine tuning: One wants the parameters in the
theory describing Nature to be close to generic values. This is intimately
related to the symmetry in the spectrum relating bosons and fermions.

Take e.g. the vacuum energy in the most simple quantum mechanical
model. For a bosonic oscillator, we have

HB =
1

2
(a†a+ aa†).

At the quantum level, i.e. when [a, a†] = ~, we have that the vacuum state,
defined by a|0〉 = 0, is such that

HB|0〉 =
1

2
aa†|0〉 =

1

2
(a†a+ ~)|0〉 =

1

2
~|0〉

so that the vacuum energy is

Evac,B =
1

2
~.
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In field theory, we basically have oscillators at every space-time point or,
in other words (and after a Fourier transform), of every frequency. Summing
over all of them will give a very large vacuum energy density, roughly pro-
portional to the 4th power of the cut off scale beyond which the theory is no
longer well defined, usually taken to be the Plack scale Mp.

1

Now consider a fermionic oscillator, with Hamiltonian and anti-commu-
tation relations as follow

HF =
1

2
(α†α− αα†), {α, α†} = ~.

If the vacuum is defined by α|0〉 = 0, we get

HF |0〉 = −1

2
αα†|0〉 = −1

2
(~− α†α)|0〉 = −1

2
~|0〉

so that the vacuum energy is now

Evac,F = −1

2
~.

It is negative.2

So, if for every frequency we have

Htot = HB +HF = a†a+ α†α

then
Etot = 0

and the total energy density vanishes.
This is one instance of the simplifications due to SUSY, and also an

example of how a symmetry (implicit but present in the above) can constrain
a quantity such as the vacuum energy. The lesson is that quantum corrections
are sometimes vanishing, or at least more constrained. As we will see, this
is also true for radiative corrections, for instance to the mass of particles.

One vexing problem of the Standard Model (SM) is the hierarchy between
the scale of Electro-weak interactions MEW ∼ 100 GeV and the Planck scale

1Indeed, trading energy scales for length scales, it makes no sense to consider any
quantum field theory at distances shorter than the Planck length (Lp = M−1p in the
relevant units), where quantum gravity effects affect the notion of space-time itself.

2Note that HFα
†|0〉 = (α†α − 1

2~)α†|0〉 = (α†~ − 1
2~α

†)|0〉 = 1
2~α

†|0〉 so that indeed
|0〉 is the ground state.
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Mp ∼ 1019 GeV. Roughly speaking, and without entering into the details,
the Electro-weak scale depends in particular on a parameter of the SM, the
Higgs scalar mass, which has to be fine tuned by many orders of magnitude
(with respect to Mp, of course) in order to give the experimentally observed
scale. Even more troubling, quantum corrections tend to restore this mass
to its “natural” scale Mp, due to quadratic divergencies. Namely, there are
for instance one-loop corrections to the Higgs scalar two-point function, with
quarks and leptons running in the loop. If H is the Higgs scalar, ψ, ψ̄ are
such representative fermions, and there is an interaction term LSM ⊃ λHψψ̄,
then the leading UV divergence in the two point function of H is proportional
to

λ2

∫ ΛUV

d4p
1

p

1

p− k
∼ λ2Λ2

UV ,

where p is the momentum running in the loop, k the incoming momentum
and ΛUV the UV cut-off of the theory.

Supersymmetry comes to the rescue by adding, for every fermion, a new
scalar particle, call it Sψ, along with a new vertex involving H, LSUSYSM ⊃
µH2S2

ψ. There is then a new one-loop correction to the two point function
for H, with Sψ running in the loop. It also has a quadratic divergence,
proportional to:

µ

∫ ΛUV

d4p
1

p2
∼ µΛ2

UV .

It is easy to conceive that by tuning the couplings µ ∝ λ2, the two leading
corrections can cancel. This is exactly what supersymmetry does!

So, SUSY can help in maintaining a hierarchy, protecting it from quantum
corrections.

Explaining the hierarchy is on the other hand more involved. Let us just
mention a natural way to generate large hierarchies in quantum field theory.
Consider for instance a scale generated dynamically by dimensional transmu-
tation along a renormalization group flow. This is the case for non-abelian
gauge theories, where the one-loop beta function for the gauge coupling g
reads

β(g) ≡ µ
dg

dµ
= − b0

16π2
g3 +O(g5).

We have that for asymptotically free theories, such as QCD, b0 > 0 and the
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above differential equation can be integrated so that

8π2

g2(µ)
=

8π2

g2(ΛUV )
+ b0 log

µ

ΛUV

.

A dynamical scale is obtained by running downwards the above expression
until the coupling becomes infinite. Reversing then the equation, we obtain
that the scale defined in such a way is given by

Λdyn = ΛUV e
− 8π2

b0g
2(ΛUV ) .

The coefficient b0 is of the order of the rank of the gauge group, while g(ΛUV )
can be naturally taken to be < 1 and reasonably small. Then the exponential
factor in the expression above can be very small, even 10−15 to mention one
interesting ratio.

The upshot is that some hierarchies, like the one between Λdyn and ΛUV ,
can be naturally explained. For instance, the dynamical scale of QCD
ΛQCD ∼ 250 MeV gives the order of magnitude of the masses of hadrons
and baryons, and the hierarchy between ΛQCD and Mp is explained by the
asymptotic freedom of QCD. Thus, for SUSY to explain the hierarchy prob-
lem in the Electro-weak sector, the mass of the Higgs scalar must be related
to a dynamically generated scale. We will see shortly how SUSY can be
associated to such a scale.

Another, independent, motivation for supersymmetry is found in the phe-
nomenological arena, and has to do with the idea of Grand Unification (a.k.a.
GUT, for Grand Unified Theory). The idea is that the gauge group of the
Standard Model is embedded in a simple gauge group:

GSM = SU(3)× SU(2)× U(1) ⊂ GGUT

One easily realizes that the two smallest simple groups are:

GGUT = SU(5), SO(10), . . .

Of course any larger group containing the above is also suitable, but the
above groups are the ones yielding a minimal extension of SM physics. (In
particular, matter representations of GGUT split up into just the matter rep-
resentations of GSM .)

A necessary condition for unification to take place, is that the breaking of
the gauge symmetry from GGUT to GSM is consistent. From first principles,
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it has to happen in the following way. In the UV, there is only one gauge
group, and hence a single coupling, which runs as prescribed by its beta
function (one assumes that the GUT is asymptotically free). Going towards
the IR, at some scale MGUT the gauge group GGUT is broken to GSM by
the Brout-Englert-Higgs mechanism (just as SU(2) × U(1)Y is broken to
U(1)EM at MEW ). At this stage, the couplings of the 3 groups in GSM start
running independently, according to each one’s beta function. However, it is
important to note that they share the same boundary conditions at MGUT .
This is referred to as gauge coupling unification. Hence, in order for the GUT
idea to work, one has to take the observed values of the gauge couplings in
GSM at, say, the Electro-weak scale MEW , and run them upwards using their
beta functions. Doing this will draw three lines3 in the plot of 1/g2

i against
log µ. GUT is then an acceptable idea if the three lines meet.

Now, if one uses the beta functions of the SM (which implies conjecturing
that there is no new physics from the MEW scale onwards to a putative
MGUT scale, since new heavy charged particles would contribute to the beta
functions at scales roughly higher than their mass), the three lines come
close but actually miss. Now three lines in a plane do not have to meet at
a common point, and do not even have to come close to that. Hence this
close miss does not rule out completely GUTs, at least at the level of wishful
thinking. But SUSY rescues the idea altogether. Indeed, using the spectrum
of the minimal SUSY extension of the SM, called the MSSM (to be defined
later..), which means that a precise set of new particles starts contributing to
the beta functions at scales slightly higher than MEW (recall that SUSY has
to kick in around MEW in order to address the hierarchy problem), then the
three lines do meet! Of course, there are error bars, but the meeting seems
indeed reasonable and it predicts a GUT scale of MGUT ∼ 1016 GeV.

Let us also briefly mention that one last interesting outcome of SUSY
is the prediction of the existence of a stable, neutral particle (the lightest
supersymmetric particle, or LSP) which is usually a viable candidate for
dark matter.

There are also theoretical motivations for studying supersymmetry. In
particular, the study of SUSY gauge theories in general (and not only the
MSSM) has had many successes. SUSY is such a strong constraint on the
structure (both at the classical and quantum levels) of the theory, that is
has been possible to obtain results in the strong coupling regime (i.e. at low-

3At least at one-loop.
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energies for asymptotically free theories, when E ∼ Λdyn and g → ∞) that
cannot be obtained, for instance, in non-supersymmetric QCD. This moti-
vation, though more remote from observational constraints, is on the other
hand somewhat more stable, in that the beautiful mathematical structure of
SUSY and its implications for quantum gauge theories are independent on
the likelihood of the LHC to work properly..

Until now, we refrained to address one important aspect, that should
however be obvious: supersymmetry is not yet observed. Again, LHC aside,
the important point here is that the SM, which reproduces so well all the
observations done until now (say, below few TeVs), is not supersymmetric.
In particular, SUSY must relate bosons and fermions, but as we will see it
commutes with any gauge group (and, for that matters, also with generic
global symmetry groups), so that superpartners must belong to the same
representations. It is obvious that bosons and fermions in the SM do not
belong to even slightly similar representations. Then, the most pressing
question to be addressed is ‘how is SUSY broken?’

There are essentially two options:

i) SUSY is broken explicitely, i.e. by non-SUSY terms in the Lagrangian,
but in a way that its virtues are not (completely) spoiled. Such breaking
is called soft SUSY breaking.

ii) SUSY is broken spontaneously (or, equivalently, dynamically, where the
two terminologies subtly refer to the breaking being due, respectively,
to a classical or a quantum mechanism): the theory is SUSY but the
(classical or quantum) vacuum is not. This is somewhat nicer because
in formulating the theory we can use all the constraints imposed by
SUSY. Many of its consequences are also still valid. Such breaking is
called spontaneous (or dynamical) SUSY breaking.

In both cases, it is important to note that there will be a scale associated to
the SUSY breaking effects, which we will call MSUSY . It can be for instance
the scale of a mass (soft), or of a VEV (spontaneous). For E > MSUSY the
theory is SUSY, while for E < MSUSY it is not. In a way, MSUSY will work
as an effective cut-off for the corrections which are protected by SUSY.

In particular, it will be phenomenologically important to obtainMSUSY �
MGUT ,Mp so as to protect (and possibly implement) the hierarchy. Natural-
ness thus seems to point towards dynamical SUSY breaking, where MSUSY

is linked to Λdyn of some gauge group, possibly hidden.
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To conclude, the motivation to study supersymmetry should be matched
by an equal motivation to study how supersymmetry can be broken.

1.2 Plan of the lecture notes

These lecture notes are organized as follows.
In Chapter 2 we review the superalgebra as an extension of the Poincaré

algebra, and its representations, i.e. the supermultiplets containing bosons
and fermions.

In Chapter 3 we implement supersymmetry at the level of Lagrangian
field theories, and provide simple examples of such theories with and without
gauge fields.

In Chapter 4 we turn to formulating manifestly SUSY invariant actions
for the same field theories, thus introducing superspace and superfields.

In Chapter 5 we discuss the most general SUSY gauge theory with matter,
reviewing its classical properties such as the moduli space of SUSY vacua,
and providing the examples of Super-QCD (SQCD) and the MSSM.

In Chapter 6 we review the perturbative quantization of SUSY field the-
ories, discussing radiative corrections and non-renormalization theorems.

In Chapter 7 we discuss various mechanisms of supersymmetry breaking.

1.3 Further reading

It can be useful to list some references, essentially reviews or books, that
can help in comprehending the subject of these notes. Most of the references
below were indeed used to form the material presented here. Additional
references on specific issues may be given at a later stage.

• A. Bilal, “Introduction to supersymmetry,” arXiv:hep-th/0101055.

• P. C. West, “Introduction to supersymmetry and supergravity,” Singa-
pore, Singapore: World Scientific (1990) 425 p.

• J. Wess and J. Bagger, “Supersymmetry and supergravity,” Princeton,
USA: Univ. Pr. (1992) 259 p.

• S. Weinberg, “The quantum theory of fields. Vol. 3: Supersymmetry,”
Cambridge, UK: Univ. Pr. (2000) 419 p.



1.3. FURTHER READING 15

• P. Argyres, “Lectures on Supersymmetry,” available at
http://www.physics.uc.edu/~argyres/661/index.html.

• J. Terning, “Modern supersymmetry: Dynamics and duality,” Oxford,
UK: Clarendon (2006) 324 p.

• S. P. Martin, “A Supersymmetry Primer,” arXiv:hep-ph/9709356.

• R. Argurio, G. Ferretti and R. Heise, “An introduction to supersym-
metric gauge theories and matrix models,” Int. J. Mod. Phys. A 19
(2004) 2015 [arXiv:hep-th/0311066].

• K. A. Intriligator and N. Seiberg, “Lectures on Supersymmetry Break-
ing,” Class. Quant. Grav. 24 (2007) S741 [arXiv:hep-ph/0702069].

The references are essentially ordered by closeness in spirit to these notes.



16 CHAPTER 1. INTRODUCTION



Chapter 2

The superalgebra

In this chapter we introduce the algebraic structure on which supersymmetry
is based, that is the superalgebra. Since it is an extension of the space-time
Poincaré symmetry, we first review some basic notions on the representa-
tions of the Lorentz group. We then present the superalgebra, and derive
the first simple physical consequences for the spectrum of a supersymmetric
theory. We then construct representations of the superalgebra, also called
supermultiplets, both massless and massive. In this chapter, we will also
briefly mention extended superalgebras, which however will not be dealt with
in the rest of the notes.

2.1 A graded extension of the Poincaré alge-

bra

In general, under mild assumptions, the Poincaré algebra cannot mix non-
trivially with other symmetries. In other words, it cannot be embedded in
a larger symmetry algebra. This is the main conclusion of the Coleman-
Mandula theorem of the ’60s. In a nutshell, it says that if there are extra
space-time symmetries (i.e. extra symmetries mixing non-trivially with the
Poincaré generators, which means that they are in non-trivial representations
of the Lorentz group), then they would constrain so much the S-matrix that
it would necessarily be trivial. It has to be noted that this theorem holds

17
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in four dimensions.1 Of course, a trivial S-matrix means that the theory is
free, and no interactions make the theory a rather dull one. Hence, the only
extensions which are allowed are the ones by global internal symmetries, i.e.
whose generators are spin 0 scalars.

Now, the Coleman-Mandula theorem is true for bosonic symmetries. It
has one exception if one considers graded extensions of the Poincaré algebra,
that is algebras involving even and odd operators such that

[E,E] = E, [E,O] = O, {O,O} = E,

with E any even operator, O any odd operator and {, } the anticommutator.
It then turns out that allowing for odd operators, the Coleman-Mandula
theorem is still at work and implies that the only such extra generators one
can add have spin 1/2. This is a theorem by Haag, Lopuszanski and Sohnius.

Very schematically, one can introduce a spin-1/2 generator Q which sat-
isfies the following (anti)commutation relations with the momentum P :

[P,Q] = 0, {Q,Q} = P.

The operator Q being of spin-1/2, it relates states belonging to represen-
tations of spin s to ones of spin s ± 1

2
. By the relation between spin and

statistics, it then relates bosons to fermions and vice-versa.
Since fermions, and spinors, are crucial to SUSY, we need to review some

facts and notation about representations of the Poincaré group, in order to
proceed and be more precise.

2.2 Representations of the Lorentz group

Let us anticipate that we will use consistently 2-component Weyl spinors
throughout these notes. Indeed, the usual Dirac spinor is actually a reducible
representation of the Lorentz group. This said, we can start reviewing the
Poincaré algebra.

The commutation relations are (µ = 0, 1, 2, 3):

[Pµ, Pν ] = 0 (2.1)

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ (2.2)

[Mµν , Pρ] = −iηµρPν + iηνρPµ (2.3)

1It has an important exception concerning theories where all degrees of freedom are
massless (the space-time symmetry becomes then the conformal group).
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Here the generators satisfy:

Mµν = −Mνµ, M †
ij = Mij, M †

0i = −M0i, P †µ = Pµ, (2.4)

i.e. they are hermitian except for the boost generators (this is due to the
non-compactness of the Lorentz group). Moreover, we take the metric to be

ηµν = diag(+,−,−,−). (2.5)

Let us now consider more closely the algebra of the Mµν , that is the
SO(1, 3) Lorentz algebra. Consider the split to the spatial indices i = 1, 2, 3
(and notice that ηij = −δij). The Mij are 3 generators satisfying

[Mij,Mkl] = iδikMjl + iδjlMik − iδilMjk − iδjkMil (2.6)

If we write
Mij = εijkJk (2.7)

that is, M12 = J3,M23 = J1,M31 = J2, we obtain

[Ji, Jj] = iεijkJk (2.8)

the algebra of SU(2).
Now we can also rename the other generators as M0i = Ki and find for

their commutation relations

[Mij,M0k] = iδjkMi0 − iδikMj0

which gives
εijl[Jl, Kk] = −iδjkKi + iδikKj

and finally
[Ji, Kj] = iεijkKk.

We also have
[M0i,M0j] = −iMij

which gives
[Ki, Kj] = −iεijkJk.

To summarize, we have rewritten the commutation relations of SO(1, 3) as:

[Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk. (2.9)
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We can now form the following complex generators

J±i =
1

2
(Ji ± iKi), (2.10)

which are hermitian, and satisfy (J±i )∗ = −J∓i (we must take all the Ji and
Ki to be imaginary, in order for all rotation and boost parameters to be real).
Let us compute their own commutation relations:

[J±i , J
±
j ] =

1

4
{iεijkJk − (−iεijkJk)± i(iεijkKk)± i(−iεjikKk)}

= iεijk
1

2
(Ji ± iKi)

= iεijkJ
±
k

while

[J±i , J
∓
j ] =

1

4
{iεijkJk + (−iεijkJk)∓ i(iεijkKk)± i(−iεjikKk)}

= 0

We have thus established that the Lorentz group can be rewritten as

SO(1, 3) = SU(2)× SU(2)∗.

This is of course a very well-known fact in the theory of Lie algebras, where at
the level of complex algebras one writes that SO(4) = SU(2)×SU(2). Here
we are concerned with a specific real form of SO(4,C). It is also sometimes
useful to note (or familiar) that

SU(2)× SU(2)∗ = SL(2,C)

the group of the 2× 2 complex matrices of unit determinant.
Here, it will suffice to recall that representations of the Lorentz group

can be classified by two SU(2) spins (s, s′) of SU(2) × SU(2)∗. Then, the
complex conjugation of the second SU(2) is understood with the following
meaning, when considering an arbitrary representation:

(s, s′)∗ = (s′, s).

The smallest representations are the spinorial ones:

(1
2
, 0) and (0, 1

2
).
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We will denote them as 2-vectors with indices, respectively

α = 1, 2 and α̇ = 1, 2.

We will thus write our Weyl spinors as ψα and ψ̄α̇, with the understanding
that

(ψα)∗ = ψ̄α̇.

Higher dimensional representations appear taking (tensor) products of
this two basic (fundamental) representations. For instance:

(1
2
, 0)⊗ (0, 1

2
) = (1

2
, 1

2
),

which is an irreducible 4-dimensional representation of SO(1, 3), so it cannot
be anything else than a vector vµ.

Indeed, we can write the product of two spinors as

ψαψ̄α̇ ≡ vαα̇

a 2×2 matrix, thus with 4 components. The latter can in turn be decomposed
into a basis of 2×2 matrices. As such a basis, we can choose the Pauli matrices
supplemented by the identity:

σµαα̇ = (I,−τi), (2.11)

which means explicitly

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 −1
−1 0

]
, σ2 =

[
0 i
−i 0

]
, σ3 =

[
−1 0
0 1

]
.

(2.12)
We now see that the product of two spinors is indeed a vector:

ψαψ̄α̇ ≡ vαα̇ = σµαα̇vµ.

Another example is the following product:

(1
2
, 0)⊗ (1

2
, 0) = (0, 0)⊕ (1, 0).

The right hand side thus corresponds to a singlet together with a 3-dimensio-
nal representation of SO(1, 3). As a product of two spinors, we can write:

ψαχβ = εαβs+ tαβ, with tαβ = tβα.
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εαβ = −εβα is the invariant tensor of SU(2) (one can check that, using the
fact that the SU(2) matrices have determinant 1).

Then, what is tαβ? It should be an integer spin representation of SO(1, 3),
so it should be associated with a bosonic field with some Lorentz symmetry.
Consider for instance an antisymmetric tensor Tµν = −Tνµ. It has 6 indepen-
dent components. However, in SO(1, 3) we also have an invariant completely
antisymmetric tensor, written as εµνρσ and sometimes called the Levi-Civita
tensor. We adopt the convention that

ε0123 = ε0123 = 1.

It can be used to define a dual tensor

T̃µν =
i

2
εµνρσT

ρσ.

Note that

˜̃Tµν =
i

2
εµνρσT̃

ρσ =
i

2
εµνρσ

(
− i

2
ερσλτTλτ

)
= Tµν .

The dual tensor is also antisymmetric T̃µν = −T̃νµ and hence also has 6
components. We can define:

Tµν =
1

2

(
Tµν +

i

2
εµνρσT

ρσ

)
+

1

2

(
Tµν −

i

2
εµνρσT

ρσ

)
=

1

2
T+
µν +

1

2
T−µν .

We have thus

T̃±µν =
i

2
εµνρσT

±ρσ = ±T±µν

which means that these two tensors are (anti)self-dual. Each one has only 3
independent (generally complex) components.

The representation (1, 0) corresponds to a self-dual tensor like T+
µν , while

(0, 1) = (1, 0)∗ corresponds to an anti-self-dual tensor like T−µν or (T+
µν)
∗.

Indeed, one has
(1

2
, 1

2
)⊗A (1

2
, 1

2
) = (1, 0)⊕ (0, 1).

Going back now to εαβ, we note that it can be used to raise and lower
indices. In the process we will fix a good deal of notation and conventions.
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First of all, we define the SU(2) antisymmetric tensor to have the following
values:

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1.

Then, we define:

ψα = εαβψβ, ψα = εαβψ
β, ψ̄α̇ = εα̇β̇ψ̄β̇, ψ̄α̇ = εα̇β̇ψ̄

β̇.

In other words, adjacent indices are always contracted with the epsilon ten-
sor on the left. [Exercise: count the number of arbitrary signs that one
is fixing with these conventions..] Note that the fact that, for instance,
ψα = εαβψβ, is really the statement that the fundamental and the antifunda-
mental representations of SU(2) are equivalent. This is not true for SU(N),
with N > 2, where there are two, distinct, conjugate N -dimensional rep-
resentations, called the fundamental and the anti-fundamental (and often
denoted by N and N̄).

As already seen, εαβ and εα̇β̇ can be used to form scalars from fermionic
bilinears. The notation and sign conventions are the following:

ψχ ≡ ψαχα = εαβψβχα = −εαβχαψβ = εβαχαψβ = χβψβ = χψ.

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ = ψ̄α̇ε

α̇β̇χ̄β̇ = −εα̇β̇χ̄β̇ψ̄α̇ = εβ̇α̇χ̄β̇ψ̄α̇ = χ̄β̇ψ̄
β̇ = χ̄ψ̄.

Note that the sign in the third equality in both expressions is due to the
Grassmann nature of the half-integer spin fields ψα etc, as it befits fermions.

Other relevant identities are as follow. To form a vector from two spinors,
one writes

ψσµχ̄ = ψασµαα̇χ̄
α̇ = −χ̄α̇σµαα̇ψα

= −εα̇β̇χ̄β̇σ
µ
αα̇ε

αβψβ = −χ̄β̇(εβ̇α̇εβασµαα̇)ψβ

= −χ̄β̇σ̄
µβ̇βψβ = −χ̄σ̄µψ,

where we have defined
(σ̄µ)α̇α = (I,+τi). (2.13)

Under complex (i.e. hermitian) conjugation, we apply the rule

(ψαχβ)∗ = χ∗βψ
∗
α = χ̄β̇ψ̄α̇,

so that
(ψχ)∗ = (ψαχα)∗ = χ̄α̇ψ̄

α̇ = χ̄ψ̄ = ψ̄χ̄.
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Finally, let us make the connection with Dirac (i.e. 4-component) spinors,
and Clifford γ-matrices. Taking

γµ =

[
0 σµ

σ̄µ 0

]
,

we can compute

γµγν + γνγµ =

[
σµσ̄ν + σν σ̄µ 0

0 σ̄µσν + σ̄νσµ

]
.

Now, we have:
2σ0σ̄0 = 2I2

σ0σ̄i + σiσ̄0 = τi − τi = 0

σiσ̄j + σjσ̄i = −{τi, τj} = −2δijI2,

and similarly for σ̄σ. Hence we are reassured to have

{γµ, γν} = 2ηµνI4.

A Dirac spinor is then a spinor

Ψ =

(
ψα
χ̄α̇

)
,

in the (1
2
, 0)⊕ (0, 1

2
) reducible representation.

The chirality matrix is

γ5 = iγ0γ1γ2γ3 =

[
I2 0
0 −I2

]
.

Hence we see that the Weyl spinors we have been dealing with are chiral, as
expected:

γ5Ψ = ±Ψ iff Ψ =

(
ψα
0

)
or Ψ =

(
0
χ̄α̇

)
.

A Majorana (“real”) spinor is one for which ψ = χ, that is

Ψ =

(
ψα
ψ̄α̇

)
.
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The Lorentz generators are written as:

Σµν =
i

2
γµν ≡ i

4
(γµγν − γνγµ) =

i

4

[
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ
]

≡
[
iσµν 0

0 iσ̄µν

]
.

This in particular means that iσµν and iσ̄µν act as Lorentz generators on ψα
and ψ̄α̇, respectively.

For example:

(iσ12)α
β

=
i

4
(σ1σ̄2−σ2σ̄1) = − i

4
(τ1τ2−τ2τ1) = − i

4
2iτ3 =

1

2
τ3 =

1

2

[
1 0
0 −1

]
and similarly for (iσ̄12)α̇β̇. This means that ψα and ψ̄α̇ correctly have eigen-

values ±1
2

for J3.

We can now close this long parenthesis on representations and nota-
tions/conventions.

2.3 A first look at the superalgebra

We are now armed with the required knowledge to write the superalgebra.
First of all, we have to write the supercharges, i.e. the odd generators of the
superalgebra. They must be in a spin-1

2
representation of the Lorentz group,

we thus write them as

Qα.

If there are several supercharges, we can write QI
α, with I = 1, . . .N . Note

that there are no independent charges like Q̄′α̇ because we can just take their
hermitian conjugate as the “elementary” supercharges, Q′α ≡ (Q̄′α̇)†. Minimal
supersymmetry (in 4 dimensions) is achieved when N = 1.

We should now write the basic anticommutation relations. Exploiting the
fact that a vector is obtained through the product of two spinors of opposite
chirality, ψαχα̇ = vαα̇ = σµαα̇vµ, we postulate:

{Qα, Q̄α̇} = 2σµαα̇Pµ. (2.14)
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The commutation relations of the Qα with the Poincaré generators or, in
other words, their transformation laws, are given by

[Pµ, Qα] = 0, (2.15)

[Mµν , Qα] = i(σµν)α
βQβ, (2.16)

[Mµν , Q̄α̇] = −i(σ̄µν)α̇β̇Q̄β̇. (2.17)

Note that the latter two equations are obtained by hermitian conjugation
from each other, and they are the rightful transformations for a spin-1

2
oper-

ator. On the other hand, the relation (2.15) follows from the Jacobi identities.
First note that Jacobi identities must be adapted to graded algebras:

[E1, [E2, O3]] + [E2, [O3, E1]] + [O3, [E1, E2]] = 0,

[E1, {O2, O3}] + {O2, [O3, E1]} − {O3, [E1, O2]} = 0,

[O1, {O2, O3}] + [O2, {O3, O1}] + [O3, {O1, O2}] = 0,

where E are even and O odd operators. Then one sees that considering the
identity for Qα, Pµ and Pν , and recalling that there should not be operators
with spin higher than 1 in the superalgebra (the Coleman-Mandula theorem
extended by Haag-Lopuszanski-Sohnius), Pµ and Qα could only commute
to Q̄α̇, but the proportionality constant must vanish (essentially, the Jacobi
identity would be proportional to σµνQ, which does not vanish).

Next, we can infer from the Jacobi identity involving Pµ, Qα and Qβ that:

{Qα, Qβ} = 0.

Thus, to recapitulate, the minimal supersymmetry algebra is given by:

{Qα, Q̄α̇} = 2σµαα̇Pµ, (2.18)

{Qα, Qβ} = 0, (2.19)

[Pµ, Qα] = 0, (2.20)

[Mµν , Qα] = i(σµν)α
βQβ. (2.21)

If we have an extended SUSY algebra, i.e. we have supercharges QI
α,

there is one more possibility which is consistent with the Jacobi identities
and the Coleman-Mandula theorem, that is we can add to the algebra some
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central charges ZIJ , which are Lorentz scalars and hence commute with all
the other generators:

{QI
α, Q̄

J
α̇} = 2σµαα̇Pµδ

IJ , (2.22)

{QI
α, Q

J
β} = εαβZ

IJ , (2.23)

[Qα, Z
IJ ] = 0, (2.24)

[Pµ, Z
IJ ] = 0, (2.25)

[Mµν , Z
IJ ] = 0. (2.26)

Note also that the anticommutation relation where they appear implies that
ZIJ = −ZJI . This is why there is no central charge when N = 1.

2.3.1 Basic consequences of the superalgebra

We state here the most basic consequences that the superalgebra has on its
representations.

First of all, since [Pµ, Qα] = 0, we also have

[P 2, Qα] = 0,

and thus any two states related by the operator Q (namely, Q|ω〉 = |ω′〉,
with |ω〉 and |ω′〉 of opposite statistics) must be degenerate in mass.

Secondly, the energy of any state is always positive, and it is zero only in
a supersymmetric ground state. This can be easily demonstrated. Take

δαα̇〈ω|{Qα, Q̄α̇}|ω〉 =
∑
α̇

〈ω|(Q̄α̇)†Q̄α̇|ω〉+
∑
α

〈ω|(Qα)†Qα|ω〉

=
∑
α̇

‖Q̄α̇|ω〉‖2 +
∑
α

‖Qα|ω〉‖2 ≥ 0.

Now, noting that δαα̇ ≡ (̄σ0)α̇α, we can also write

δαα̇〈ω|{Qα, Q̄α̇}|ω〉 = 2(σ̄0)α̇ασµαα̇〈ω|Pµ|ω〉
= 4〈ω|P0|ω〉
= 4E‖|ω〉‖2. (2.27)

We thus conclude that E ≥ 0 for any state |ω〉 in a supersymmetric theory.
(Note that we adopt the reasonable convention that P0 = P 0 ≥ 0 for future
directed physical particles.)
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Conversely, we also note that E = 0 holds if and only if

Qα|ω〉 = 0, Q̄α̇|ω〉 = 0,

which means that a zero energy state must be invariant under all supersym-
metries. Since we also have that Pµ|ω〉 = 0, we conclude that it must be a
(supersymmetric) ground state.

It should be noted that this is a powerful statement. In particular, it
holds also at the quantum level, thus the exact quantum vacuum of a theory,
if it is supersymmetric, has exactly vanishing energy. This is to be contrasted
with the usual non supersymmetric theories, where the vacuum fluctuations
give a non-zero value to the vacuum energy (recall the discussion on the
harmonic oscillators in the previous chapter).

The third consequence that we are going to derive is that in a supermul-
tiplet, there is an equal amount of bosonic and fermionic degrees of freedom.
Consider the operator (−1)F , which is such that

(−1)F |ωb〉 = |ωb〉, (−1)F |ωf〉 = −|ωf〉,

for |ωb〉 a bosonic and |ωf〉 a fermionic state. Obviously, since Q shifts the
spin by 1

2
, it changes the statistics, which implies that it satisfies

(−1)FQ = −Q(−1)F . (2.28)

For states such that P0 is fixed and 6= 0, we have (the trace is over all
such states in the theory):

tr (−1)FP0 =
1

2
δαα̇tr (−1)Fσµαα̇Pµ

=
1

4
δαα̇tr (−1)F (QαQ̄α̇ + Q̄α̇Qα)

=
1

4
δαα̇tr

[
(−1)FQαQ̄α̇ − Q̄α̇(−1)FQα

]
=

1

4
δαα̇tr

[
(−1)FQαQ̄α̇ − (−1)FQαQ̄α̇

]
= 0,

where in the one before the last equality we have used the cyclicity of the
trace.
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Hence, in particular, summing on any finite dimensional representation
with non zero energy

tr (−1)F = 0. (2.29)

This implies that there is an equal number of bosonic and fermionic degrees
of freedom in such a representation, or supermultiplet.

Note that the only states which can be unpaired are the SUSY ground
states, for which P0 = 0. Indeed, the most typical case is when there is only
one ground state, which is bosonic.

2.4 Representations of the superalgebra

In this section we work out the representations of the superalgebra, which are
also called supermultiplets. Indeed, they can be thought as multiplets where
we assemble together several different representations of the Lorentz algebra,
since the latter is a subalgebra of the superalgebra. We start with massless
representations, and then proceed to massive ones. On the path, we will make
a short digression concerning supermultiplets of extended superalgebras.

2.4.1 Massless supermultiplets

If P 2 = 0, we can take Pµ to a canonical form by applying boosts and
rotations until it reads

Pµ = (E, 0, 0, E).

Then

σµαα̇Pµ = (σ0 + σ3)E =

[
0 0
0 2E

]
,

and the SUSY algebra becomes[
{Q1, Q̄1̇} {Q1, Q̄2̇}
{Q2, Q̄1̇} {Q2, Q̄2̇}

]
=

[
0 0
0 4E

]
, (2.30)

intended as acting on the states of the multiplet we are looking for.
In particular,

{Q1, Q̄1̇} = 0,

which implies that
‖Q1|ω〉‖2 = 0 = ‖Q̄1̇|ω〉‖2
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and thus
Q1|ω〉 = 0 = Q̄1̇|ω〉.

This means that as operators, Q1 = Q̄1̇ = 0 on this multiplet.
The only nontrivial anticommutation relation that is left is:

{Q2, Q̄2̇} = 4E. (2.31)

If we call

α =
1

2
√
E
Q2, α† =

1

2
√
E
Q̄2̇,

then the anticommutation relations take the normalized form

{α, α†} = 1,

with of course {α, α} = 0.
We can build the representation starting from a state |λ〉 such that

α|λ〉 = 0.

Suppose it has helicity λ:

M12|λ〉 ≡ J3|λ〉 = λ|λ〉.

Then we can compute the helicity of α†|λ〉:

M12Q̄2̇|λ〉 = (Q̄2̇M12 + 1
2
Q̄2̇)|λ〉 = (λ+ 1

2
)Q̄2̇|λ〉,

where we have used [M12, Q̄2̇] = 1
2
Q̄2̇. Thus we learn that

α†|λ〉 = |λ+ 1
2
〉.

It stops here since (α†)2 = 0 and hence

α†|λ+ 1
2
〉 = 0.

Massless multiplets are thus composed of one boson and one fermion.
Since physical particles must come in CPT conjugate representations (or,
there are no spin-1

2
one-dimensional representations of the massless little

group of the Lorentz group), one must add the CPT conjugate multiplet
where helicities are flipped.

Let us give some examples:
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• The scalar multiplet is obtained setting λ = 0. Then we have

α†|0〉 = |1
2
〉.

The full multiplet is composed of two states with λ = 0 and a doublet
with λ = ±1

2
. These are the degrees of freedom of a complex scalar

and a Weyl (chiral) fermion.

• The vector multiplet is obtained starting from a λ = 1
2

state. We get

α†|1
2
〉 = |1〉.

To this we add the CPT conjugate multiplet, to obtain two pairs of
states, one with λ = ±1

2
and the other with λ = ±1. These are the

degrees of freedom of a Weyl fermion and of a massless vector. The
latter is usually interpreted as a gauge boson.

• Another multiplet is obtained starting from λ = 3
2
:

α†|3
2
〉 = |2〉.

Adding the CPT conjugate, one has a pair of bosonic degrees of freedom
with λ = ±2, which we interpret as the graviton, and a pair of fermionic
degrees of freedom with λ = ±3

2
, which correspond to a massless spin-3

2

Rarita-Schwinger field, also called the gravitino, since it is the SUSY
partner of the graviton, as we have just showed.

2.4.2 Supermultiplets of extended supersymmetry

Let us very briefly mention that having extended SUSY, the massless super-
multiplets are longer. Take the superalgebra to be:

{QI
α, Q̄

J
α̇} = 2σµαα̇Pµδ

IJ ,

where for simplicity we suppose that ZIJ = 0 on these states. For massless
states, Pµ = (E, 0, 0, E) and as before we have that

{QI
1, Q̄

J
1̇
} = 0,

which implies the operator equations QI
1 = 0 and Q̄I

1̇
= 0, for I = 1, . . .N ,

on these states. The nontrivial relations are:

{QI
2, Q̄

J
2̇
} = 4EδIJ ,
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so that we can define

αI =
1

2
√
E
QI

2

and obtain the canonical anticommutation relations for N fermionic oscilla-
tors

{αI , α†J} = δIJ .

If we start now from a state |λ〉 of helicity λ which satisfies αI |λ〉 = 0, we
build a multiplet as follows:

α†I |λ〉 = |λ+ 1
2
〉I ,

α†Iα
†
J |λ〉 = |λ+ 1〉[IJ ],

...

α†1 . . . α
†
N |λ〉 = |λ+ N

2
〉. (2.32)

Note that there are N states with helicity λ + 1
2
, 1

2
N (N − 1) states with

helicity λ+ 1 and so on, until a single state with helicity λ+ N
2

(it is totally
antisymmetric in N indices I).

In total, the supermultiplet is composed of

N∑
k=0

(N
k

)
= 2N

states, half of them bosonic and half of them fermionic (as can be ascertained
by computing

∑N
k=0(−1)k

(N
k

)
= (1− 1)N = 0).

Interestingly, in this case we can now have self-CPT conjugate multiplets.
Take e.g. N = 4 and start from λ = −1. Then λ+ N

2
= 1 and the multiplet

spans states of opposite helicities, thus filling complete representations of the
Lorentz group. Indeed, it contains one pair of states with λ = ±1 (a vector,
i.e. a gauge boson), 4 pairs of states with λ = ±1

2
(4 Weyl fermions) and 6

states with λ = 0 (6 real scalars, or equivalently 3 complex scalars).
Another example is N = 8 supersymmetry. Here if we start with λ = −2

we end up with λ+ N
2

= 2. Thus in this case we have the graviton in the self-
CPT conjugate multiplet, corresponding to the pair of states with λ = ±2.
In addition, we have 8 massless gravitini with λ = ±3

2
, 28 massless vectors

with λ = ±1, 56 massless Weyl fermions with λ = ±1
2

and finally 70 real
scalars with λ = 0. This is the content of N = 8 supergravity, which is the
only multiplet of N = 8 supersymmetry with |λ| ≤ 2. The latter condition
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is necessary in order to have consistent couplings (higher spin fields cannot
be coupled in a consistent way with gravity and lower spin fields).

From the theoretical perspective, this is a very nice result, because we
have a theory where everything is determined from symmetry alone: the
complete spectrum and (as we will see) all the couplings. Unfortunately, this
theory is also completely unphysical... To mention one problem, it has no
room for fermions in complex representations of the gauge group, which are
on the other hand present in the Standard Model.

2.4.3 Massive supermultiplets

When P 2 = M2 > 0, by boosts and rotations Pµ can be put in the following
form

Pµ = (M, 0, 0, 0).

Then we have

σµαα̇Pµ = Mσ0 =

[
M 0
0 M

]
,

so that the superalgebra reads

{Qα, Q̄α̇} = 2Mδαα̇. (2.33)

Note that [M12, Q1] = i(σ12)1
1Q1 = 1

2
Q1, thus it is Q1 that raises the helicity,

in the same way as Q̄2̇. We make the redefinition

α1 =
1√
2M

Q̄1̇, α†1 =
1√
2M

Q1,

α2 =
1√
2M

Q2, α†2 =
1√
2M

Q̄2̇, (2.34)

so that we have the canonical anticommutation relations of two fermionic
oscillators:

{αa, α†b} = δab, a, b = 1, 2.

If we start with αa|λ〉 = 0, M12|λ〉 = λ|λ〉, then we build the multiplet
as:

α†1|λ〉 = |λ+ 1
2
〉1,

α†2|λ〉 = |λ+ 1
2
〉2,

α†1α
†
2|λ〉 = |λ+ 1〉.
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There are 4 states now (compared to the 2 in the massless case), two bosons
and 2 fermions.

Let us consider again two examples.

• In the case of the massive scalar multiplet, we start from λ = −1
2

and
obtain two states with λ = 0 and one state with λ = 1

2
. These are

the degrees of freedom of one massive complex scalar and one massive
Weyl fermion. Note that the latter might not be familiar. Indeed, one
cannot write the usual Dirac mass term for a Weyl fermion. Instead,
one can write what is called a Majorana mass term:

L ⊃ mεαβψαψβ + h.c.

We will come back to this later on. Note also that the total number of
degrees of freedom of a massive scalar multiplet is the same as that of
a massless one.

• For a massive vector multiplet, start from λ = 0 to obtain 2 states with
λ = 1

2
and one state with λ = 1. To this we add the CPT conjugate

multiplet so that in the end we have one pair with λ = ±1, two pairs
with λ = ±1

2
and 2 states with λ = 0. According to the massive little

group, this corresponds to 1 massive vector (with λ = ±1, 0), 1 real
scalar and 1 massive Dirac fermion. Note however that the content in
degrees of freedom is the same as that of one massless vector multiplet
together with one massless scalar multiplet. This is a hint that the
consistent way to treat massive vectors in a supersymmetric field theory
will be through a SUSY version of the Brout-Englert-Higgs mechanism.

We are now done with describing the degrees of freedom in the supermulti-
plets, and we move on to consider the field theories describing them.

The main message to take away from this section is that to every degree
of freedom (i.e. particle) one considers, SUSY gives it (at least) a partner,
i.e. its superpartner. So for instance, for every (chiral) fermion of the SM,
there is a complex scalar with the same quantum numbers (for instance,
gauge charges). The superpartners of the quarks are called squarks, while the
superpartners of the leptons are called sleptons. If the SM particle is itself a
complex scalar, like the Higgs, then its superpartner is a chiral fermion, called
in this case the higgsino. On the other hand, we have seen that the gauge
bosons (massless vectors) also have a chiral fermion superpartner, which is
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called the gaugino. In particular, the superpartners of the gluons, W , Z and
the photon are called gluinos, Wino, Zino and photino. Last but not the
least, in supergravity the superpartner of the graviton is the gravitino, as we
already mentioned. All this might sound a little ridiculous but we all get
used to it eventually...
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Chapter 3

Supersymmetric field theories

In this chapter, we discuss how the supersymmetry algebra is represented on
fields, with the aim of building field theory actions invariant under super-
symmetry. We will use a constructive approach, starting from the variations
of the fields, proceeding to the action for free fields and then introducing
the interactions. We repeat the exercise both for the scalar and the vec-
tor supermultiplet. The hidden goal of the present chapter is, while making
the reader familiar with supersymmetric field theories, to convince her/him
that the present approach has to be replaced by a better formalism where
supersymmetry is manifestly realized.

3.1 The theory for the scalar multiplet

Our aim is to construct field theories which are supersymmetric, i.e. such
that their action is invariant under supersymmetry.

We have seen how supercharges act on single particle states. Our goal
now is to implement how supercharges act on the fields that create those
particles. Since we know that there must be bosonic and fermionic particles,
there will also be bosonic and fermionic fields.

The action of any symmetry generator on a field is usually encoded in a
variation of the field. The relation to the action on a state is as follows. Take
e.g. a U(1) charge:

Q|q〉 = q|q〉,

so that |q〉 is a state of a particle of charge q, and Q is a Lie algebra generator.
Then, the field φ creating the state |q〉 must be in a representation of the

37
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group generated by Q. It transforms as

φ→ φ′ = eiQαφ = eiqαφ,

where α is the parameter of the transformation. For small α, we can write
the transformation above as a variation:

δαφ = φ′ − φ = iQαφ = iqαφ,

where we have expanded the exponential at first order. These are the varia-
tions that are usually written in field theory, and which represent the algebra
of symmetries on the fields.

3.1.1 Supersymmetry variations on scalar and fermionic
fields

For supersymmetry, the generators act in the following way in the simplest
case of a massless scalar multiplet:

1

2
√
E
Q̄2̇|λ = 0〉 = |λ = 1

2
〉

1

2
√
E
Q2|λ = 1

2
〉 = |λ = 0〉

Considering now the CPT complete multiplet, the two |λ = 0〉 states will be
created by a compex scalar field φ, while the |λ = ±1

2
〉 helicity states will be

created by a fermionic spin-1
2

field ψ, which is a Weyl spinor.
Clearly, from the relations above, the variation of the scalar φ must be

proportional to the spinor ψ, and vice-versa. We deduce that the parameter
ε of the variation must be a Grassmann-odd, spinor variable in order for the
relation to be consistent (i.e. for it to conserve spin and statistics). Also, the
parameter ε must have some mass dimension.

Indeed, recall that [P ] = M , i.e. the momentum generator has the di-
mension of mass. The fact that (schematically) {Q, Q̄} = P and Q̄ = Q†

implies that the supercharges have a dimesion given by [Q] = M1/2. So, if
we want to be able to exponentiate the action of the supercharge, by writing
eεQ, we see that we should have [εQ] = M0 and hence [ε] = M−1/2.

Now, the fields have canonical dimensions given by [φ] = M and [ψ] =
M3/2. Thus, the only possibility we are left with (up to a numerical constant)
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for the variation of the scalar is:

δεφ =
√

2εαψα. (3.1)

For the variation of the fermion, we guess the following:

δεψα = i
√

2σµαα̇ε̄
α̇∂µφ. (3.2)

Let us see if the above variations indeed lead to the SUSY algebra being
realized on the fields φ and ψ. In order to do this, we need to commute two
variations. First note that in terms of the supercharges, the variations are
written as:

δφ = i(εαQα + Q̄α̇ε̄
α̇)φ, (3.3)

where we have written the variation of φ but the same relation should be
true for any field. Then, the SUSY algebra dictates that the commutator of
two variations should satisfy:

[δ1, δ2]φ = −[εα1Qα + Q̄α̇ε̄
α̇
1 , ε

β
2Qβ + Q̄β̇ ε̄

β̇
2 ]φ

= −
(
εα1{Qα, Q̄β̇}ε̄

β̇
2 − ε

β
2{Qβ, Q̄α̇}ε̄α̇1

)
φ

= −2 (ε1σ
µε̄2Pµ − ε2σµε̄1Pµ)φ

= 2i (ε1σ
µε̄2 − ε2σµε̄1) ∂µφ (3.4)

where we recall that the action of the momentum operator on a field is

Pµφ = −i∂µφ.

Again, we stress that the above consequence of the SUSY algebra holds for
any field.

We then check whether the variations (3.1) and (3.2) do indeed reproduce
the above requirement. On the scalar field we have:1

[δ1, δ2]φ = δ1δ2φ− δ2δ1φ

=
√

2εα1 δ2ψα −
√

2εα2 δ1ψα

= 2iε1σ
µε̄2∂µφ− 2iε2σ

µε̄1∂µφ

= 2i (ε1σ
µε̄2 − ε2σµε̄1) ∂µφ (3.5)

1We adopt the following convention for the action of two successive variations. Given
a set of fields ϕi transforming as δϕi = Ri

jϕ
j , we take δ1δ2ϕ

i = Ri
1jδ2ϕ

j = Ri
1jR

j
2kϕ

k =

(R1R2)ijϕ
j . This is consistent with the superspace approach to compute such variations

that we will introduce in the next chapter.
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as it should.
Encouraged by this positive result, let us jump ahead and write already

an action which is invariant under the above variations. In order to do this,
we have however to first recall how to write an action for Weyl fermions.

Take a Dirac spinor to be

Ψ =

(
ψ
χ̄

)
.

Its Lagrangian density is
L = −iΨ̄γµ∂µΨ.

Recall now that

Ψ̄ = Ψ†γ0 =
(
ψ̄ χ

) [ 0 I
I 0

]
=
(
χ ψ̄

)
.

Then the Lagrangian density can be rewritten

L = −i
(
χ ψ̄

) [ 0 σµ

σ̄µ 0

](
∂µψ
∂µχ̄

)
= −iχσµ∂µχ̄− iψ̄σ̄µ∂µψ.

We will thus take
LWeyl = −iψ̄σ̄µ∂µψ. (3.6)

Note also that

S = −
∫
d4x iψ̄σ̄µ∂µψ =

∫
d4x i∂µψσ

µψ̄ = −
∫
d4x iψσµ∂µψ̄,

where the middle equality follows from the identity ψ̄σ̄µχ = −χσµψ̄ and the
last equality is obtained integrating by parts. As for the reality of the action,
it follows from:

S∗ =

∫
d4x i∂µψ̄σ̄

µψ = −
∫
d4x iψ̄σ̄µ∂µψ = S.

Again, in the middle equality one integrates by parts.
We can now write the action of a complex scalar together with a Weyl

fermion, both massless:

Stot =

∫
d4x

(
∂µφ∂

µφ∗ − iψ̄σ̄µ∂µψ
)
. (3.7)
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Taking its SUSY variation gives:

δStot =

∫
d4x

(
∂µδφ∂

µφ∗ + ∂µφ∂
µδφ∗ − iδψ̄σ̄µ∂µψ − iψ̄σ̄µ∂µδψ

)
.

Now, recall that the variations of the complex conjugate fields read

δψ̄α̇ = −i
√

2εασµαα̇∂µφ
∗, δφ∗ =

√
2ψ̄α̇ε̄

α̇.

The variation is again

δStot =
√

2

∫
d4x

(
ε∂µψ∂

µφ∗ + ∂µφ∂
µψ̄ε̄− εσν σ̄µ∂µψ∂νφ∗ + ψ̄σ̄µσν ε̄∂µ∂νφ

)
.

Integrating by parts the first three terms gives

δStot =
√

2

∫
d4x

(
−εψ∂µ∂µφ∗ − ψ̄ε̄∂µ∂µφ+ εσν σ̄µψ∂µ∂νφ

∗ + ψ̄σ̄µσν ε̄∂µ∂νφ
)
.

Now we notice that

σ̄µσν∂µ∂νφ =
1

2
(σ̄µσν + σ̄νσµ)∂µ∂νφ = ηµν∂µ∂νφ = ∂µ∂

µφ.

Hence

δStot =
√

2

∫
d4x

(
−εψ∂µ∂µφ∗ − ψ̄ε̄∂µ∂µφ+ εψ∂µ∂

µφ∗ + ψ̄ε̄∂µ∂
µφ
)

= 0.

The action is thus invariant under the SUSY variations.
This is all reassuring. There is however a subtlety: Let us go back one

step and verify that the SUSY algebra is satisfied also on the field ψ. We
know we should have

[δ1, δ2]ψα = 2i (ε1σ
µε̄2 − ε2σµε̄1) ∂µψα.

Using now the variations, we have

[δ1, δ2]ψα = δ1δ2ψα − δ2δ1ψα

= i
√

2σµαα̇ε̄
α̇
1∂µδ2φ− i

√
2σµαα̇ε̄

α̇
2∂µδ1φ

= 2iσµαα̇ε̄
α̇
1 ε
β
2∂µψβ − 2iσµαα̇ε̄

α̇
2 ε
β
1∂µψβ
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This is not quite close to what we want, because ψ is not carrying the right
index on the r.h.s. (we would like to have expressions like εβ1σ

µ
βα̇ε̄

α̇
2ψα, i.e.

with no sum on the index carried by ψ). A way to rearrange the sums over
the spinorial indices is through Fierz identities.

The essence of the Fierz rearrangements is the following. Note first that
ψ̄α̇χα is a 2× 2 matrix. It can be expanded as

ψ̄α̇χα = vµσ̄
µα̇α,

where vµ will have an expression in terms of the two fermions:

vµ ∝ χασµαα̇ψ̄
α̇.

The only thing that is left to determine is the constant of proportionality.
We do this e.g. by specializing to a particular component:

ψ̄1̇χ1 = aχασµαα̇ψ̄
α̇σ̄µ1̇1 (σ̄01̇1 = σ̄31̇1 = 1)

= aχαψ̄α̇(σ0αα̇ + σ3αα̇) (σi = τi)

= aχαψ̄α̇(δαα̇ + τ3αα̇)

= 2aχ1ψ̄1̇

so that we fix a = −1
2
. Hence, the relevant Fierz identity reads

ψ̄α̇χα = −1

2
χβσµββ̇ψ̄

β̇σ̄µα̇α. (3.8)

The interesting outcome of this manipulation is of course that the free indices
formerly carried by the spinors are now carried by the σ̄ matrix.

We can thus continue with the evaluation of the variation:

[δ1, δ2]ψα = −iσµαα̇ε2σν ε̄1σ̄να̇β∂µψβ + iσµαα̇ε1σν ε̄2σ̄
να̇β∂µψβ

= i(ε1σν ε̄2 − ε2σν ε̄1)σµαα̇σ̄
να̇β∂µψβ

= i(ε1σν ε̄2 − ε2σν ε̄1)(2ηµνδβα − σναα̇σ̄µα̇β)∂µψβ

= 2i(ε1σ
µε̄2 − ε2σµε̄1)∂µψα − i(ε1σν ε̄2 − ε2σν ε̄1)σναα̇σ̄

µα̇β∂µψβ.

We thus obtain what we wanted, up to an extra term which however vanishes
whenever the equations of motion of ψ are satisfied (indeed, the latter read
σ̄µ∂µψ = 0), i.e. on-shell. This is not completely satisfying, because we
would like to be able to close the SUSY algebra off-shell, that is even if the
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equations of motion are not satisfied. One motivation for that is for instance
to be able to do quantum field theory at a later stage (where virtual particles
are usually not on-shell).

A way out in order to be able to do so, is to introduce auxiliary fields in
addition to the physical fields φ and ψ.

3.1.2 Introducing auxiliary fields

If we are to realize the SUSY algebra off-shell, we should balance the degrees
of freedom off-shell, i.e. the number of components of the fields. Since we
have 2 components from the complex φ and 4 components from the Weyl
spinor ψ, we see that we need an additional 2 bosonic components.

We thus add another complex scalar f , of mass dimension two [f ] = M2,
and modify the variation of ψ to account for an extra term:

δψα = i
√

2σµαα̇ε̄
α̇∂µφ+

√
2εαf. (3.9)

Of course we also have to write a variation for f :

δf = i
√

2ε̄α̇σ̄
µα̇α∂µψα. (3.10)

Note that it is proportional to the equations of motion of ψ, i.e. it vanishes
on-shell.

Then we can again verify the SUSY algebra on all fields. First we re-check
it on φ, since we have an additional piece in (3.9):

[δ1, δ2]φ =
√

2εα1 δ2ψα −
√

2εα2 δ1ψα

= · · ·+ 2εα1 ε2αf − 2εα2 ε1αf

= · · ·+ 0,

that is the we get what we already had. For ψ, we now have:

[δ1, δ2]ψα = δ1δ2ψα − δ2δ1ψα

= · · ·+
√

2ε1αδ2f −
√

2ε2αδ1f

= · · ·+ 2iε1αε̄2α̇σ̄
µα̇β∂µψβ − 2iε2αε̄1α̇σ̄

µα̇β∂µψβ.

We now use again a Fierz identity, which reads:

ψαχ̄α̇ =
1

2
ψσµχ̄σ

µ
αα̇.
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Going on, and putting together with the previous result, we get:

[δ1, δ2]ψα = 2i(ε1σ
µε̄2 − ε2σµε̄1)∂µψα − i(ε1σν ε̄2 − ε2σν ε̄1)σναα̇σ̄

µα̇β∂µψβ

−iε2σν ε̄1σναα̇σ̄µα̇β∂µψβ + iε1σν ε̄2σ
ν
αα̇σ̄

µα̇β∂µψβ

= 2i(ε1σ
µε̄2 − ε2σµε̄1)∂µψα.

Now the SUSY algebra is realized on ψ off-shell.
As a last step, we close the SUSY algebra also on the new field f :

[δ1, δ2]f = δ1δ2f − δ2δ1f

= i
√

2ε̄1α̇σ̄
µα̇α∂µδ2ψα − i

√
2ε̄2α̇σ̄

µα̇α∂µδ1ψα

= −2ε̄1α̇σ̄
µα̇ασν

αβ̇
ε̄β̇2∂µ∂νφ+ 2iε̄1α̇σ̄

µα̇αε2α∂µf

+2ε̄2α̇σ̄
µα̇ασν

αβ̇
ε̄β̇1∂µ∂νφ− 2iε̄2α̇σ̄

µα̇αε1α∂µf

= −2ε̄1ε̄2∂µ∂
µφ+ 2iε̄1σ̄

µε2∂µf

+2ε̄2ε̄1∂µ∂
µφ− 2iε̄2σ̄

µε1∂µf

= 2i(ε1σ
µε̄2 − ε2σµε̄1)∂µf,

as desired (recall that χ̄σ̄µψ = −ψσµχ̄).
Thus we have a set of fields φ, ψ, f with variations which represent the

SUSY algebra off-shell. As we already mentioned, the two complex scalars
have a total of 4 off-shell real degrees of freedom, while one Weyl fermion also
has two complex components and thus 4 off-shell real degrees of freedom.
However on-shell the degrees of freedom of the Weyl fermion reduce to 2
(because the equations of motion are of first order), while the ones of the
scalars, if they are dynamical, usually stay the same number. We conclude
that the scalar f must have no dynamics.

Indeed, consider the variation of the action (3.7) with the new term in
δψα (and recall that δψ̄α̇ = · · ·+

√
2ε̄α̇f

∗). Given that without the additional
term the variation was zero, we get:

δStot = −
∫
d4x
√

2i
(
f ∗ε̄σ̄µ∂µψ + ψ̄σ̄µε∂µf

)
= −

∫
d4x
√

2i
(
f ∗ε̄σ̄µ∂µψ − ∂µψ̄σ̄µεf

)
.

Since δf = i
√

2ε̄σ̄µ∂µψ, and δf ∗ = −i
√

2∂µψ̄σ̄
µε, if we set:

Saux =

∫
d4x f ∗f,



3.1. THE THEORY FOR THE SCALAR MULTIPLET 45

we have

δSaux =

∫
d4x (f ∗δf + δf ∗f)

=

∫
d4x
√

2i
(
f ∗ε̄σ̄µ∂µψ − ∂µψ̄σ̄µεf

)
so that

δStot + δSaux = 0,

i.e.

S ′tot = Stot + Saux =

∫
d4x

(
∂µφ∂

µφ∗ − iψ̄σ̄µ∂µψ + f ∗f
)
. (3.11)

is invariant under SUSY variations.
Clearly, the equations of motion for f are

f = 0 = f ∗,

so there are no propagating degrees of freedom for f . This is a confirmation
that it is indeed an auxiliary field.

The above is the simplest SUSY field theory, of a massless free scalar and
a massless free Weyl fermion. As such, it is rather empty. We would now
like to introduce possibly mass terms, and most of all interactions.

3.1.3 Supersymmetric mass terms

It is easy to notice that it is not completely straightforward to introduce
mass terms in a supersymmetric action. Consider the usual mass term for a
complex scalar:

Lmφ = −|m|2φ∗φ.

It variation reads:

δLmφ = −
√

2|m|2(φ∗εψ + ε̄ψ̄φ).

On the other hand, for a Weyl fermion the (Majorana) mass term is:

Lmψ =
1

2
mψαψα +

1

2
m∗ψ̄α̇ψ̄

α̇,
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so that the variation of the corresponding term in the action is:

δ

∫
d4xLmψ =

∫
d4x (mψαδψα +m∗δψ̄α̇ψ̄

α̇)

=

∫
d4x
√

2(imψσµε̄∂µφ+mψεf − im∗εσµψ̄∂µφ∗ +m∗f ∗ε̄ψ̄)

=

∫
d4x
√

2(mψεf +m∗f ∗ε̄ψ̄ − im∂µψσµε̄φ+ im∗φ∗εσµ∂µψ̄)

It is obvious that the above variation cannot be compensated off-shell by
δLmφ. However it is also rather easy to see that it is compensated by the
variation of

Lmbos = −mφf −m∗f ∗φ∗.
We can thus write a tentative Lagrangian for the mass terms:

Lm =
1

2
mψψ −mφf +

1

2
m∗ψ̄ψ̄ −m∗f ∗φ∗, (3.12)

which satisfies

δ

∫
d4xLm = 0.

In order to see that it is indeed a mass term for the bosons, let us consider
the full bosonic Lagrangian:

Lbos = ∂µφ
∗∂µφ+ ff ∗ −mφf −m∗f ∗φ∗.

Imposing the equations of motion for the auxiliary fields f (i.e. “integrating
them out”), we obtain:

δLbos

δf
= f ∗ −mφ = 0.

This implies
f ∗ = mφ, f = m∗φ∗,

so that the bosonic Lagrangian becomes

Lbos|f = ∂µφ
∗∂µφ− |m|2φφ∗,

indeed the Lagrangian of a massive scalar.
In other words, we have computed the potential for the scalar:

V (φ, φ∗) = |m|2φφ∗ = ff ∗.

Note that supersymmetry imposes the mass degeneracy between the fermions
and the bosons also at the level of the action, of course.
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3.1.4 Supersymmetric interactions

Let us now consider the addition of interactions. We have many options, but
it is here that we expect to find new constraints from supersymmetry.

Consider interaction terms of dimension 3 or 4 (i.e. we consider renor-
malizable interactions). For interaction terms involving the fermions, the
only option is to have a Yukawa-like interaction involving two fermions and
a scalar, schematically φψψ. For interactions among bosons only, we have at
dimension 3 only a term trilinear in the scalars φ3, while at dimension 4 we
have two options, fφ2 and φ4.

Now, the only interaction term at dimension 3 cannot be supersymmetric
by itself (off shell), and hence cannot be present in a SUSY Lagrangian. We
are left with the dimension 4 terms, and the only hope is to play the ones with
the fermions against the bosonic ones. Again, the φ4 is not promising since
it variates to φ3εψ, with no derivatives, which will not be cancelled by any
term from δφψψ. Hence it turns out that the only possibility is to play φψψ
against fφ2 (where now we intend precisely the holomorphic fields, while the
preceding discussion is valid also for terms mixing complex conjugates).

Consider the following variation:

δ(φψαψα) =
√

2
{
εαψαψ

βψβ + 2φψα(iσµαα̇ε̄
α̇∂µφ+ εαf)

}
= 2

√
2(iφψσµε̄∂µφ+ φψεf).

Indeed, note that ψαψ
βψβ = 0 because in every term of the sum we will

have ψ1 or ψ2 appearing twice, and (ψ1)2 = 0 = (ψ2)2 by Grassmann parity.
Notice also that a similar term trilinear in the fermions would not vanish if
we computed the variation δ(φ∗ψαψα). This is what constrains us to consider
only the purely holomorphic interaction term.

Take then:

δ

∫
d4x fφ2 =

√
2

∫
d4x (iε̄σ̄µ∂µψφ

2 + 2fφεψ)

=
√

2

∫
d4x (−2iε̄σ̄µψφ∂µφ+ 2fφεψ)

= 2
√

2

∫
d4x (iψσµε̄φ∂µφ+ fφεψ).

We have thus constructed the Lagrangian interaction terms:

Lint = λφψψ − λfφ2 + h.c., (3.13)
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where λ is the coupling. They satisfy

δ

∫
d4xLint = 0.

An important fact is the following. The above variation vanishes without
mixing between the holomorphic fields φ, ψ and f and the anti-holomorphic
ones φ∗, ψ̄ and f ∗. This was actually also true for the mass terms in Lm. As
we will see in the next chapter, this fact has a deep reason.

We are now ready to sum up all the pieces together, and we write the com-
plete supersymmetric Lagrangian for a massive complex scalar and massive
Weyl fermion in interaction:

L′′tot = ∂µφ
∗∂µφ−iψ̄σ̄µ∂µψ+ff ∗+

(
1

2
mψψ −mφf + λφψψ − λfφ2 + h.c.

)
.

(3.14)
As before, we integrate out the auxiliary fields by imposing their algebraic
(non-dynamical) equations of motion:

δL′′tot

δf
= f ∗ −mφ− λφ2.

After substitution, we obtain:

L′′tot|f on−shell = ∂µφ
∗∂µφ− iψ̄σ̄µ∂µψ +

(
1

2
mψψ + λφψψ + h.c.

)
−|m|2|φ|2 − |λ|2|φ|4 − (m∗λφ∗φ2 + h.c.). (3.15)

We recognize a Yukawa term φψψ with coupling λ, and a quartic interaction
for the scalar |φ|4 with coupling |λ|2. In other words, as anticipated in the first
chapter, there are relations among the couplings such as λquartic = |λYukawa|2.
There are also couplings which are strictly set to zero, such as φ∗ψψ and φ3.

We will see in the next chapter that there is a much simpler and natural
way to encode all these facts.

3.2 The theory for the vector multiplet

Let us now briefly consider the supersymmetric field theory of the massless
vector multiplet, which is obviously relevant to supersymmetric gauge theo-
ries. In this simple approach, we should already warn the reader that gauge
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symmetry might mix non-trivially, in the sense that sometimes results will
be obtained up to gauge transformations. Indeed, gauge invariance is an
important element in the counting of degrees of freedom, and SUSY is all
about matching exactly degrees of freedom.

Since
1

2
√
E
Q̄2̇|λ = 1

2
〉 = |λ = 1〉

we will have in the field content a spin 1 vector gauge field Aµ and a Weyl
fermion conventionally denoted as λα. It turns out that we will need, as for
the scalar multiplet, an auxiliary field D, which is here a real scalar. The
SUSY transformations are as follows:

δAµ = −iλ̄σ̄µε+ iε̄σ̄µλ, (3.16)

δλα = −σµναβεβFµν + iεαD, (3.17)

δλ̄α̇ = ε̄β̇σ̄
µνβ̇

α̇Fµν − iε̄α̇D, (3.18)

δD = −εσµ∂µλ̄− ∂µλσµε̄. (3.19)

One can then start checking that the above SUSY transformations indeed
represent the SUSY algebra on all fields. For instance:

[δ1, δ2]Aµ = δ1δ2A
µ − δ2δ1A

µ

= −iδ2λ̄σ̄
µε1 + iε̄1σ̄

µδ2λ+ iδ1λ̄σ̄
µε2 − iε̄2σ̄µδ1λ

= −iε̄2σ̄ρσσ̄µε1Fρσ − ε̄2σ̄µε1D − iε̄1σ̄µσρσε2Fρσ − ε̄1σ̄µε2D
+iε̄1σ̄

ρσσ̄µε2Fρσ + ε̄1σ̄
µε2D + iε̄2σ̄

µσρσε1Fρσ + ε̄2σ̄
µε1D

= iε̄1(σ̄ρσσ̄µ − σ̄µσρσ)ε2Fρσ − iε̄2(σ̄ρσσ̄µ − σ̄µσρσ)ε1Fρσ.

Now we use the identity

σ̄ρσσ̄µ − σ̄µσρσ = −ηµρσ̄σ + ηµσσ̄ρ

so that we get:

[δ1, δ2]Aµ = −2iε̄1σ̄νε2F
µν + 2iε̄2σ̄νε1F

µν

= 2i(ε2σν ε̄1 − ε1σν ε̄2)F µν

= 2i(ε1σ
ν ε̄2 − ε2σν ε̄1)∂νA

µ + ∂µ [2i(ε2σν ε̄1 − ε1σν ε̄2)Aν ] .

The first term in the result is what we indeed expect for a realization of the
SUSY algebra on Aµ. The second term is an extra, but not worrysome, since
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it takes the form of a gauge transformation on the vector field Aµ. Since Aµ
is defined up to gauge transformations, we see that upon modding out by
this gauge freedom the superalgebra indeed closes on the vector field.

If we count on-shell degrees of freedom, we know that we have 2 for Aµ, 2
for λ and 0 for D since the latter has [D] = M2 and hence has no dynamics.
However, we are aiming here at balancing the degrees of freedom also off-
shell, and the counting goes as follows. The are 4 d.o.f. for λ, 1 for D (recall
that it is real), and hence we are left with 3 for Aµ. We can understand this
number by the fact that as shown above, it is really on equivalence classes
under the gauge transformations that the superalgebra closes. Off-shell, one
such equivalence class is specified by the choice of the 4 components of Aµ,
up to a transformation involving one scalar function Aµ → Aµ + ∂µα, which
makes the 3 independent components that we were seeking.

We will later see that there is a formalism where we do not need to go
through these subtleties, the price to pay being the introduction of additional
non-physical degrees of freedom.

Let us now skip the other (rather tedious) commutators of SUSY varia-
tions, and proceed to check the invariance of the action:

S =

∫
d4x

(
−1

4
F µνFµν − iλ̄σ̄µ∂µλ+

1

2
D2

)
. (3.20)

Under a SUSY transformation we have:

δS =

∫
d4x

(
−F µν∂µδAν − iδλ̄σ̄µ∂µλ− iλ̄σ̄µ∂µδλ+DδD

)
=

∫
d4x

(
iF µν∂µλ̄σ̄νε− iF µν ε̄σ̄ν∂µλ− iε̄σ̄ρσσ̄µ∂µλFρσ − ε̄σ̄µ∂µλD

+i λ̄σ̄µσρσε∂µFρσ + λ̄σ̄µε∂µD −Dεσµ∂µλ̄−D∂µλσµε̄
)

=

∫
d4x

(
iF µν∂µλ̄σ̄νε− iF µν ε̄σ̄ν∂µλ+ iε̄σ̄ρσσ̄µλ∂µFρσ + ∂µλσ

µε̄D

+i λ̄σ̄µσρσε∂µFρσ + εσµ∂µλ̄D −Dεσµ∂µλ̄−D∂µλσµε̄
)
.

The terms containing D simplify, while for the others one has to use the
following identity:

λ̄σ̄µσρσε∂µFρσ = λ̄σ̄νε∂µFµν

and its complex conjugate

ε̄σ̄ρσσ̄µλ∂µFρσ = −ε̄σ̄νλ∂µFµν
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where in deriving them we have used for instance that ∂[µFρσ] = 0.
Eventually we get:

δS =

∫
d4x

(
iF µν∂µλ̄σ̄νε− iF µν ε̄σ̄ν∂µλ− iε̄σ̄νλ∂µFµν + iλ̄σ̄νε∂µFµν

)
= 0,

so that the action is invariant up to a boundary term as usual. We have thus
shown that the action (3.20) is the correct one for the supersymmetrization
of the action of an abelian (free) vector field.

It is important to note that promoting the above discussion to a vector
field taking values in a non-abelian gauge group is non-trivial. This is to be
expected since by doing so one is actually introducing interactions and we
have seen that interactions must be introduced delicately in a supersymmetric
field theory. In particular, all the members of the vector multiplet Aµ, λ and
D must belong to the adjoint representation of the gauge group, which means
that they transform non-trivially under gauge transformations, e.g.

δgaugeλ = ig[λ, α]

and hence in turn they couple non-trivially with the gauge boson.
However, we will not pursue the construction of a non-abelian gauge

theory along the lines discussed in the present chapter. Indeed, it should
be by now obvious that building SUSY field theories in this way is rather
painful: one has to check first that the SUSY algebra is realized on every
field, and then check that the action that one has guessed is also invariant
under SUSY transformations. This is not the way that one builds Lorentz
invariant actions for instance! Rather, we use a formulation that is manifestly
Lorentz covariant. It is then clear that we need an organizing principle also
for supersymmetry. This will be the subject of the next chapter.
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Chapter 4

Superspace and superfields

The aim of this chapter is to present a formulation of supersymmetric field
theories which is manifestly supersymmetric. The key in achieving this is
to see supersymmetric variations as the result of generalized translations in
superspace, which is an extension of ordinary spacetime by Grassmannian
(i.e. “fermionic”) coordinates. Then, the various fields which are mapped to
each other through supersymmetric variations are assembled together into
superfields, which depend on all the coordinates of superspace. It is in terms
of the superfields that we are able to write manifestly SUSY invariant actions.
It will also turn out that we need to constrain the most general superfield,
in two different ways, in order to reproduce the field content of the theories
for both the scalar and the vector multiplet, respectively.

4.1 Introducing superspace and superfields

In the previous chapter, we have constructed supersymmetric field theories
by enforcing that they be invariant under supersymmetry transformations,
that we had defined as acting on the fields. This approach is quite laborious,
and we would thus like to formulate SUSY field theories in a way that SUSY
is a manifest symmetry, so that we could avoid to have to check invariance
under it at every step in the construction.

Let us have a brief interlude to illustrate a similar need for manifest
invariance in the presumably familiar example of Lorentz symmetry.

The vacuum Maxwell equations

~∇ · ~E = 0, ~∇× ~B = −∂t ~E, ~∇× ~E = ∂t ~B, ~∇ · ~B = 0

53
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are invariant under (infinitesimal) boosts

δx0 = ωx3, δx3 = ωx0

provided the electric and magnetic fields also transform as

δE1 = ωB2, δE2 = −ωB1, δB1 = −ωE2, δB2 = ωE1.

The Lorentz transformation mixes Ei and Bi, so that an invariant term,
suitable to appear in the action, is

E2
i −B2

i ,

where the sign is of course crucial for invariance.
All of this is made trivial using Lorentz covariant objects. The electric

and magnetic fields are assembled in one field strength Fµν such that

F0i = Ei, Fij = εijkBk

and the Lorentz transformation of Fµν reads

δFµν = Fµρω
ρ
ν − Fνρωρµ.

The Lagrangian is then trivially proportional to the only quadratic Lorentz
scalar one can build from Fµν :

L ∝ F µνFµν .

Our aim is to pursue a similar route as far as supersymmetry is concerned.
First of all, we should ask ourselves what kind of spacetime symmetry is

closest to supersymmetry. From the SUSY algebra

{Qα, Q̄α̇} = 2σµαα̇Pµ, (4.1)

it is obvious: the translations, which are generated by Pµ.
The action of a translation xµ → xµ + aµ on a field φ(x) yields the

following variation:

δφ(x) = iaµPµφ(x) = aµ∂µφ(x). (4.2)

This can be seen as the limit of small aµ of a finite translation which, at the
operator level, reads φ(x+ a) = eia

µPµφ(x)e−ia
µPµ .
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This is well-known, but it is important here to adopt a point of view which
is to look at a specific fixed spacetime point x. At that point, we see that
a translation maps one field φ, to another field ∂µφ, in a different Lorentz
representation, but of the same Grassmann G-parity. This is because the
parameter of the translation is aµ, a Grassmann even (bosonic) quantity, as
the coordinates of spacetime xµ are.

Now, supersymmetry maps instead G-even fields φ to G-odd fields ψ (at
the same spacetime point of course), and the SUSY parameter ε (or ε̄) is G-
odd. It is tempting to interpret εα as parametrizing a translation in a G-odd
coordinate θα. Spacetime is thus extended to superspace parametrized by

xµ, θα, θ̄α̇.

The Grassmann coordinates being complex, the full superspace is indeed
parametrized also by their complex conjugates (just as R2 = C is parametrized
by z and z̄).

In the same way as we expand a spacetime field in its derivatives

φ(x) = φ(0) + xµ∂µφ(0) + . . .

we expand a superfield both in xµ and in θ, θ̄. However the coefficients in
this expansion really are different spacetime fields, with alternate G-parity:

Φ(x, θ, θ̄) = φ(x) + θαψα(x) + . . .

A crucial and important difference is that since θ, θ̄ are anticommuting, the
expansion is finite: (θ1)2 = 0 and similarly for the other Grassmann coordi-
nates. The expansion stops when we have all four of them: θ1θ2θ̄1θ̄2.

The most general superfield is thus:

Y (x, θ, θ̄) = φ(x) + θη(x) + θ̄χ̄(x) + θ2m(x) + θ̄2n(x)

+θσµθ̄Aµ(x) + θ2θ̄λ̄(x) + θ̄2θψ(x) + θ2θ̄2d(x). (4.3)

We have defined:

θ2 = θαθα = εαβθβθα = 2θ2θ1 = −2θ1θ2,

θ̄2 = θ̄α̇θ̄
α̇ = εα̇β̇ θ̄α̇θ̄β̇ = 2θ̄1θ̄2. (4.4)

Note also that

θαθβ =
1

2
εαβθ

2, θαθβ = −1

2
εαβθ2,

θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄

2, θ̄α̇θ̄β̇ =
1

2
εα̇β̇ θ̄2, (4.5)
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and recall that

θαθ̄α̇ =
1

2
θσµθ̄σ

µ
αα̇. (4.6)

The superfield Y is composed of 4 complex scalars φ,m, n and d, 1 com-
plex vector Aµ and 4 Weyl fermions η, ψ, χ̄ and λ̄. In total we have 16
bosonic degrees of freedom and 16 fermionic degrees of freedom. These are
all off-shell degrees of freedom.

Clearly, a generic superfield such as the one above forms a representa-
tion of the SUSY algebra (indeed, we have a balance between bosonic and
fermionic degrees of freedom), but it must be reducible, since we have already
encountered much smaller representations. Recall that the scalar multiplet
had 4+4 off-shell degrees of freedom, and the vector multiplet also had 4+4
off-shell (but gauge fixed) degrees of freedom. We will see shortly how to
reduce consistently the number of components in a superfield. However we
have first to see how it represents the SUSY algebra.

4.1.1 Supersymmetry transformations as translations
in superspace

We have established supersymmetry transformations as translations in the
θ, θ̄ coordinates of superspace. However, if they did just that two SUSY
transformations would anticommute to nothing. Instead they must anticom-
mute to a spacetime translation.

Recall that

{Qα, Q̄α̇} = 2σµαα̇Pµ

implies that (see e.g. (3.4))

[i(ε1Q+ Q̄ε̄1), i(ε2Q+ Q̄ε̄2)] = −2(ε1σ
µε̄2 − ε2σµε̄1)Pµ

= iaµPµ.

Thus the commutator of two translations

θ → θ + ε1, θ̄ → θ̄ + ε̄1 and θ → θ + ε2, θ̄ → θ̄ + ε̄2,

is a spacetime translation

xµ → xµ + 2i(ε1σ
µε̄2 − ε2σµε̄1).



4.1. INTRODUCING SUPERSPACE AND SUPERFIELDS 57

As a consequence, a translation in θ must also be accompanied by some trans-
formation on xµ. It turns out that a full supertranslation is the following:

θ → θ + ε, θ̄ → θ̄ + ε̄

xµ → xµ + iθσµε̄− iεσµθ̄. (4.7)

This is actually the most symmetrical definition, other definitions are possible
and may be useful in some special cases. In these notes we will stick to the
definition above.

It is easy to check indeed using the above that

[δ1, δ2]xµ = 2i(ε1σ
µε̄2 − ε2σµε̄1)

as required.
We now wish to implement SUSY translations on superfields in the same

way as we are used to implement spacetime translations on ordinary fields,
that is through the operator Pµ = −i∂µ.

Clearly, restricting to the operator that is multiplied by the parameter
ε, in order to implement at the same time θ → θ + ε and xµ → xµ − iεσµθ̄,
the operator will involve a “derivative” with respect to θ and a term like
−iσµθ̄∂µ (recall that xµ → xµ + aµ is represented by aµ∂µ).

We must then first define derivatives with respect to G-odd variables. We
require:

∂

∂θα
θβ ≡ ∂αθ

β = δβα and
∂

∂θ̄α̇
θ̄β̇ ≡ ∂̄α̇θ̄

β̇ = δβ̇α̇, (4.8)

where we have defined our shorthands. Notice this implies

∂αθβ = −δαβ and ∂̄α̇θ̄β̇ = −δα̇
β̇
.

As usual with Grassmann variables, we must anticommute the variable to the
left of the monomial before acting on it with the derivative. (Alternatively,
passing through the monomial we must anticommute the derivative.) Under
hermitian conjugation we have(

∂

∂θα

)†
=

∂

∂θ̄α̇
.

Indeed, under complex conjugation we have that

∂̄α̇θ̄
β̇ = δβ̇α̇ = (δβα)∗ = (∂αθ

β)∗ = θ̄β̇(
←−
∂α)∗ = −(∂α)∗θ̄β̇
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so that (∂α)∗ = −∂̄α̇. Hermitian conjugation implies an extra − sign as for
∂µ.

We can then define the differential operators generating the supersym-
metry transformations as

Qα = −i∂α − σµαα̇θ̄α̇∂µ,

Q̄α̇ = i∂̄α̇ + θασµαα̇∂µ. (4.9)

It is easily checked that

(Qα)† = i∂†α − (θ̄α̇)∗(σµαα̇)†∂†µ = i∂̄α̇ − θασµαα̇(−∂µ) = Q̄α̇.

We can also check that we correctly obtain

δεx
µ = iεαQαx

µ = −iεσµθ̄,
δε̄x

µ = iQ̄α̇ε̄
α̇xµ = iθσµε̄.

Most importantly, the supersymmetry algebra is correctly represented:

{Qα, Q̄α̇} = −iσµαα̇∂µ − iσ
µ
αα̇∂µ = −2iσµαα̇∂µ = 2σµαα̇Pµ.

Thus, a general SUSY transformation on a superfield Y will be obtained by
acting with the operators Q and Q̄ on Y :

δε,ε̄Y = i(εQ+ ε̄Q̄)Y

=
[
εα∂α − ε̄α̇∂̄α̇ + i(θσµε̄− εσµθ̄)∂µ

]
Y (x, θ, θ̄). (4.10)

It is obvious that δY is also a superfield (just because it is a function
of x, θ and θ̄), thus it can be decomposed in components, and one can then
read the variations component by component. Since the action of Q and Q̄
implies derivatives and multiplication with respect to θ, θ̄, the bosonic and
fermionic components are mixed under the variation.

If we start from (4.3)

Y = φ+ θη + θ̄χ̄+ θ2m+ θ̄2n+ θσµθ̄Aµ + θ2θ̄λ̄+ θ̄2θψ + θ2θ̄2d,

we obtain for the variation

δY = εη + 2θεm+ εσµθ̄Aµ + 2θεθ̄λ̄+ θ̄2εψ + 2θ̄2θεd

+ε̄χ̄+ 2θ̄ε̄n+ θσµε̄Aµ + θ2ε̄λ̄+ 2θ̄ε̄θψ + 2θ2θ̄ε̄d

+iθσµε̄∂µφ− iεσµθ̄∂µφ+ . . .

+iθσµε̄θ̄2θ∂µψ − iεσµθ̄θ2θ̄∂µλ̄.
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Thus we learn that the variations of the components are for instance

δφ = εη + ε̄χ̄

δη = iσµε̄∂µφ+ 2εm+ σµε̄Aµ

δχ̄ = −iεσµ∂µφ+ 2ε̄n+ εσµAµ
...

δd =
i

2
εσµ∂µλ̄−

i

2
∂µψσ

µε̄, (4.11)

where we have used, e.g.

θασµαα̇ε̄
α̇θβ∂µψβ = −1

2
εαβθ2∂µψβσ

µ
αα̇ε̄

α̇ = −1
2
θ2∂µψσ

µε̄.

4.1.2 Manifestly supersymmetry invariant action

We now revert to the original goal, that is to write a manifestly SUSY in-
variant action.

Consider again for the sake of the example the Poincaré symmetry. An
action which is invariant under Lorentz transformations and translations is

S =

∫
d4xL(φ),

with L a Lorentz scalar function of the fields φ, and no explicit dependence
on the spacetime coordinates xµ.

Translations then generate a total derivative. Under xµ → xµ + aµ, the
action varies as

δS =

∫
d4xδL =

∫
d4xaµ∂µL =

∫
d4x∂µ(aµL).

Total derivatives do not affect the action principle, and thus the equations
of motion, since they are boundary terms fixed by the boundary conditions
one imposes on the fields. Hence the theory defined by S is invariant under
translations.

Alternatively, we can obtain the same result in a slightly different (pas-
sive) way. Since there is no explicit xµ dependence in L, translations can be
reabsorbed by the integration:

δS =

∫
d4x [L(φ(x+ a))− L(φ(x))] =

∫
d4xL(φ(x+ a))−

∫
d4xL(φ(x))

=

∫
d4x′L(φ(x′))−

∫
d4xL(φ(x)) = 0.
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In order to write
∫
d4(x′−a) ≡

∫
d4x′ of course we also need to fix boundary

conditions on φ.
We can now make the most natural guess for an action invariant under

SUSY translations: we have to integrate over all of superspace

S ∝
∫
d4x

∫
d2θ

∫
d2θ̄(. . . ).

Before continuing, we need therefore to give our definition of integrals over
G-odd variables.

Let us consider first a single Grassmann variable θ (like, e.g., a single
component θ1 of θα). The most general function of θ is

f(θ) = a+ bθ

since there cannot be terms like θ2 or higher. Then we define in the most
general way ∫

dθ(a+ bθ) = b.

Indeed, such a definition gives a translational invariant integral:∫
dθf(θ + ε) =

∫
dθ(a+ bθ + bε) = b since

∫
dθε = 0.

We now define the integrals over
∫
d2θ and

∫
d2θ̄ in such a way that:∫

d2θθ2 = 1,

∫
d2θ̄θ̄2 = 1. (4.12)

Since θ2 = 2θ2θ1 and θ̄2 = 2θ̄1θ̄2, we have∫
d2θ = 1

2

∫
dθ1dθ2,

∫
d2θ̄ = 1

2

∫
dθ̄2dθ̄1 (4.13)

and also, eventually: ∫
d2θd2θ̄θ2θ̄2 = 1. (4.14)

As a consequence, integrating a superfield over all of superspace will single
out its highest component, which we called d before:∫

d2θd2θ̄Y(x, θ, θ̄) = d(x). (4.15)
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Here Y has to be considered more generally as a composite superfield, i.e.
the result of a product of two (or possibly more) “elementary superfields”.
It is obvious that a product of superfields is still a superfield, and all its
components, though being themselves composite, will still be related by the
same supersymmetry transformations as given above.

Indeed, we have seen that the SUSY variation of d is a total derivative

δd =
i

2
εσµ∂µλ̄−

i

2
∂µψσ

µε̄ = ∂µ

(
i

2
εσµλ̄− i

2
ψσµε̄

)
,

so that if the Lagrangian is just given by d,

L = d ⇒ δL = ∂µv
µ

and the action is invariant. In other words, we have shown that an action
written as

S =

∫
d4xd2θd2θ̄Y , (4.16)

with Y a scalar superfield (generically composite), is automatically invariant
under supersymmetry transformations. This is what we refer to as manifest
supersymmetry invariance.

As a last remark, note that here too there cannot be explicit θ dependence.
Indeed, θα by itself is rather obviously not a superfield.

In order to write now sensible supersymmetric actions, we need to impose
conditions on the generic superfield Y in such a way that it will eventually
describe irreducible representations of the SUSY algebra.

4.2 Chiral superfields

The condition that we want to impose on a generic superfield must (anti)com-
mute with the supercharges so that the constrained superfield is indeed
mapped to itself by a SUSY transformation. In other words, the components
which are projected out should not be re-generated by SUSY transformations.

One approach is to look for subsets of components of a general superfield
Y that do not mix with each other when taking the variation δY . Concretely,
one imposes a constraint on the superfield and then verifies that the variation
of the superfield satisfies the same constraint. The outcome is as follows.
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It turns out that it is convenient to introduce the following two operators:

Dα = ∂α + iσµαα̇θ̄
α̇∂µ

D̄α̇ = ∂̄α̇ + iθασµαα̇∂µ (4.17)

which satisfy (Dα)† = D̄α̇.
The two operators above look very similar to Qα and Q̄α̇, except for a

relative sign. It is because of this relative sign that they actually anticommute
with Qα and Q̄α̇. Indeed

{Dα, Qβ} = 0 = {D̄α̇, Q̄β̇},

{Dα, Q̄α̇} = ∂α(θβσµβα̇∂µ) + i∂̄α̇(iσµ
αβ̇
θ̄β̇∂µ) = σµαα̇∂µ − σ

µ
αα̇∂µ = 0,

and similarly

{D̄α̇, Qα} = 0.

Moreover, among themselves these operators anticommute to

{Dα, Dβ} = 0 = {D̄α̇, D̄β̇},

{Dα, D̄α̇} = 2iσµαα̇∂µ.

Since Dα anticommutes with the supercharges, it can be used to write a
condition that reduces the components of a general superfield. Indeed, if Y
is such that DαY = 0, then also δY satisfies

DαδY = Dα[i(εQ+ Q̄ε̄)Y ] = i(εQ+ Q̄ε̄)DαY = 0.

This means that the components that are eliminated with the constraint
DαY = 0 are not regenerated by a SUSY variation. The same can obviously
be said of D̄α̇Y = 0.

We therefore define

• Chiral superfields

D̄α̇Φ = 0 (4.18)

• Anti-chiral superfields

DαΦ̄ = 0. (4.19)
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The names reflect the following facts. First note that

D̄α̇θ
β = 0.

Another quantity that is annihilated by D̄α̇ is

D̄α̇(xµ + iθσµθ̄) = −iθασµαα̇ + iθασµαα̇ = 0.

Thus, if we call
yµ = xµ + iθσµθ̄, (4.20)

a chiral superfield only depends on θ and y:

D̄α̇Φ = 0 ⇔ Φ = Φ(y, θ). (4.21)

It is called chiral, or (equivalently) holomorphic, in the same sense as for a
holomorphic function of z we have that

∂

∂z̄
f = 0 ⇔ f = f(z).

In components, we write:

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2f(y) (4.22)

= φ(x) + iθσµθ̄∂µφ(x)− 1
2
θσµθ̄θσν θ̄∂µ∂νφ(x)

+
√

2θψ(x) + i
√

2θσµθ̄θ∂µψ(x) + θ2f(x).

Recalling some identities like θαθβ = −1
2
εαβ, θ̄α̇θ̄β̇ = 1

2
εα̇β̇, εαβεα̇β̇σµ

ββ̇
= σ̄µαα̇

and (σµσ̄ν + σν σ̄µ)α
β = 2ηµνδαβ , we have that

θσµθ̄θσν θ̄∂µ∂νφ = 1
2
θ2θ̄2∂µ∂

µφ

and
θσµθ̄θ∂µψ = 1

2
θ2θ̄σ̄µ∂µψ.

Thus eventually, the chiral superfield in components reads

Φ(y, θ) = φ(x) + iθσµθ̄∂µφ(x)− 1

4
θ2θ̄2∂µ∂

µφ(x)

+
√

2θψ(x) +
i√
2
θ2θ̄σ̄µ∂µψ(x) + θ2f(x). (4.23)
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We will not really often need the higher components, usually the component
fields in terms of the shifted variable y are enough.

Let us now compute a SUSY variation of Φ and translate it to its com-
ponents, as we did before for the general superfield Y (x, θ, θ̄). It is simplest
to first recall that SUSY transformations are supertranslations:

δθα = i(εQ+ ε̄Q̄)θα = εα,

δyµ = i(εQ+ ε̄Q̄)yµ = δxµ + iδθσµθ̄ + θσµδθ̄

= iθσµε̄− iεσµθ̄ + iθσµε̄+ iεσµθ̄ = 2iθσµε̄.

Hence, we have

δΦ = ∂µφ(y)δyµ +
√

2δθψ(y) +
√

2θ∂µψ(y)δyµ + 2θδθf(y) + θ2∂µf(y)δyµ,

where we have used that δF (y) = ∂µF (y)δyµ. The last term vanishes because
it is cubic in θ. We thus obtain:

δΦ = 2iθσµε̄∂µφ(y) +
√

2εψ(y) + 2
√

2iθσµε̄θ∂µψ(y) + 2θεf(y)

=
√

2εψ(y) +
√

2θ
(
i
√

2σµε̄∂µφ(y) +
√

2εf(y)
)

+ θ2
(
i
√

2ε̄σ̄µ∂µψ(y)
)
.

Correctly, we find an expression that depends only on θ and y, so that δΦ
is a chiral superfield, D̄α̇δΦ = 0. We can now read the variations of each
component:

δφ =
√

2εψ,

δψ = i
√

2σµε̄∂µφ(y) +
√

2εf, (4.24)

δf = i
√

2ε̄σ̄µ∂µψ.

These are exactly the variations that we had postulated for the scalar (Wess-
Zumino) model, see (3.1), (3.9) and (3.10).

4.2.1 Action for a chiral superfield

We have bundled together in a superfield the (off-shell) degrees of freedom of
the scalar multiplet that we had discussed in the previous chapter. We have
also checked that the suspersymmetry transformations are correctly repro-
duced, as expected for a manifestly SUSY formulation of the theory. What
we are still missing is a way to write the action in terms of the superfields,
so as to reproduce the action for the scalar supermultiplet theory.
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Recall that an action is the spacetime integral of a Lagrangian

S =

∫
d4xL

where L is a real scalar, and in a manifestly SUSY formulation it must be
the highest component of a general superfield, i.e. the coefficient of θ2θ̄2.

Now, we expect the lowest terms in the action to be quadratic in the
fields. Since the superfield Φ is linear in its component fields, we should thus
look for an expression quadratic in Φ. Moreover, if we want the expression
to be real, it should also involve the complex conjugate of Φ, that is Φ̄ = Φ†.
It is an antichiral superfield, since D̄α̇Φ = 0 implies

DαΦ̄ = 0.

Hence it has an expansion given by

Φ̄ = φ∗(ȳ) +
√

2θ̄ψ̄(ȳ) + θ̄2f ∗(ȳ), where ȳµ = (yµ)∗ = xµ − iθσµθ̄.

Let us think one moment of dimensional analysis in order to write the
action. Of course, we require [L] = M4 so that the action is dimensionless (we
are using units where ~ = 1). From the (free) action (3.11), we gather that the
component fields have the usual canonical dimensions [φ] = M , [ψ] = M3/2

and [f ] = M2. At the beginning of Chapter 3 we also derived that the SUSY
parameter should have dimension [ε] = M−1/2. Then, this must be the
dimension of the Grassmann coordinates of superspace, [θ] = M−1/2. Thus,
every term in the expansion of a chiral superfield has the same dimension,
and the dimension of the superfield itself is given by

[Φ] = M.

However, recall that in order to write a Lagrangian density in a manifestly
SUSY invariant way, i.e. in terms of superfields, we need to integrate over
superspace

L =

∫
d2θd2θ̄Y. (4.25)

Notice that
∫
dθθ = 1 implies that the Grassmann differential has the oppo-

site dimension with respect to the coordinate

[dθ] = [θ]−1 = M1/2,
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so that the measure over all of superspace has dimension

[d2θd2θ̄] = M2.

Given (4.25), this implies that

[L] = M4 ⇔ [Y ] = M2.

Collecting all the constraints derived from the above discussion, we learn
that the action must be expressed in terms of a superfield Y which has
dimension two, is quadratic in Φ and has to be real. There are only two
options, ΦΦ̄ and (Φ2 + Φ̄2). The latter however, after being integrated over
all of superspace, becomes a total derivative (as we will see shortly, Φ2 is
also a chiral superfield, and hence its d-component is a total derivative, see
eq. (4.23)). Hence the only possibility is really Y = ΦΦ̄.

Let us then compute

L =

∫
d2θd2θ̄ΦΦ̄.

In other words, we need to extract the θ2θ̄2 component of ΦΦ̄. Recall that
we have

Φ = φ+
√

2θψ + iθσµθ̄∂µφ+ θ2f +
i√
2
θ2θ̄σ̄µ∂µψ −

1

4
θ2θ̄2∂µ∂µφ,

Φ̄ = φ∗ +
√

2θ̄ψ̄ − iθσµθ̄∂µφ∗ + θ̄2f ∗ +
i√
2
θ̄2θσµ∂µψ̄ −

1

4
θ2θ̄2∂µ∂µφ

∗.

Then,

ΦΦ̄ = φ

(
−1

4
θ2θ̄2∂µ∂µφ

∗
)

+
√

2θψ

(
i√
2
θ̄2θσµ∂µψ̄

)
+iθσµθ̄∂µφ

(
−iθσν θ̄∂νφ∗

)
+ θ2θ̄2ff ∗ +

i√
2
θ2θ̄σ̄µ∂µψ(

√
2θ̄ψ̄)

−1

4
θ2θ̄2∂µ∂µφ · φ∗ + terms with 3 θs or less

We now use the following identities

θσµθ̄θσν θ̄ = 1
2
θ2θ̄2ηµν ,

θψθσµ∂µψ̄ = −1
2
θ2ψσµ∂µψ̄,

θ̄σ̄µ∂µψθ̄ψ̄ = −1
2
θ̄2ψ̄σ̄µ∂µψ,
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to obtain

ΦΦ̄ = θ2θ̄2

{
−1

4
φ∂µ∂µφ

∗ +
1

2
∂µφ∂µφ

∗ − 1

4
φ∗∂µ∂µφ+ ff ∗

− i
2
ψσµ∂µψ̄ −

i

2
ψ̄σ̄µ∂µψ

}
+ . . .

so that, eventually

S =

∫
d4x

∫
d2θd2θ̄ΦΦ̄

=

∫
d4x

{
−1

4
φ∂µ∂µφ

∗ +
1

2
∂µφ∂µφ

∗ − 1

4
φ∗∂µ∂µφ+ ff ∗

+
i

2
∂µψ̄σ̄

µψ − i

2
ψ̄σ̄µ∂µψ

}
=

∫
d4x

(
∂µφ∂µφ

∗ − iψ̄σ̄µ∂µψ + ff ∗
)
. (4.26)

This is exactly the action (3.11) for the free massless theory of a scalar
supermultiplet.

Since we are interested in theories which go beyond the massless, free
limit, we see that we have obtained the kinetic term of the full action. We
seem however to have a little problem: ΦΦ̄ is the lowest dimension expression
that we can write, and it eventually leads to a two-derivative Lagrangian
density. How are we going to write non-derivative interactions? d-terms
such as the one considered above do not leave much room for that. We have
to look for another possibility.

4.2.2 Superpotential

Recall that we had postulated that L ∝ d because a d-term has a SUSY
variation that is a total derivative, δεd = ∂µv

µ
ε . Let us now go back to the

expression for δΦ in components, or equivalently to the variations (4.24). We
immediately realize that

δf = i
√

2ε̄σ̄µ∂µψ = ∂µ(i
√

2ε̄σ̄µψ) = ∂µṽ
µ,

the variation of an f -term, the highest (independent) component of a chiral
superfield, is also always a total derivative. This is true for the f -term of
any chiral superfield.
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Now, note that the product of 2 chiral superfields is itself a chiral super-
field. Indeed if D̄α̇Φ = 0 and D̄α̇Σ = 0, then

D̄α̇(ΦΣ) = (D̄α̇Φ)Σ + Φ(D̄α̇Σ) = 0.

In components, take

Φ = φ+
√

2θψ + θ2f, Σ = σ +
√

2θχ+ θ2g

where all fields depend on y; for the product we obtain

ΦΣ = φσ +
√

2θ(ψσ + χφ) + θ2(fσ + φg − ψχ)

(we have used that θψθχ = −1
2
θ2ψχ). It is thus obvious that ΦΣ is also a

chiral superfield in its own right, and then the variation of its f -term has
to be of the form given in (4.24) with all component fields replaced by the
bilinears read from the expression above.

This is then true for any function of chiral superfields only. If W (z) is
a holomorphic function, then W (Φ), as defined by the Taylor expansion of
W (z), is a chiral superfield:

D̄α̇W (Φ) = W ′(Φ)D̄α̇Φ = 0.

Then, the f -term of W (Φ), i.e. the coefficient of θ2, has a SUSY variation
which is a total derivative. Since

∫
d2θθ2 = 1, we can single out this compo-

nent by integrating over only half of superspace∫
d2θW (Φ),

with the understanding that the resulting expression is evaluated at yµ = xµ.
For the action to be real, we must add the complex conjugate. Hence,

another piece of a manifestly SUSY invariant action is:∫
d4x

(∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄)

)
, (4.27)

where by W̄ we denote the function W̄ (z̄) = W (z)∗, that is we take the
complex conjugates of the expansion coefficients (i.e. the coupling constants).

Since the integral over half of superspace has a measure of dimension
[d2θ] = M , we will have a Lagrangian density of canonical dimension [L] =
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M4 only provided [W ] = M3. Therefore, we will have a renormalizable
theory (all couplings are dimensionless or have positive mass dimensions) if
the function W (Φ), called the superpotential, is at most cubic.

We take

W (Φ) = −1

2
mΦ2 − 1

3
λΦ3. (4.28)

According to the rule discussed above, we have

Φ2 = φ2 + 2
√

2θψφ+ θ2(2φf − ψψ),

Φ3 = φ3 + 3
√

2θψφ2 + θ2(3φ2f − 3φψψ).

Hence, ∫
d2θW (Φ) = −mφf + 1

2
mψψ − λφ2f + λφψψ. (4.29)

This is exactly the holomorphic piece of total Lagrangian (3.14) of the Wess-
Zumino model discussed in the previous chapter. The holomorphicity of
such terms, which was unexplained in the construction in components that
we performed previously, has now a natural explanation in terms of chiral
superfields. The importance of the present result cannot be stressed enough:
The fact that supersymmetry imposes the mass and interaction terms for
chiral superfields, i.e. the superpotential, to be holomorphic has enormous
consequences. Indeed, such results based on symmetries apply to a theory in
general, even after quantum corrections are taken into account (at the per-
turbative and even at the non-perturbative level). Hence, holomorphy of the
superpotential will highly constrain the quantum radiative corrections and
the renormalization of the theory, and also the non-perturbative corrections
affecting the effective action.

It is possible to consider more general expressions for W (Φ), for instance
in the context of effective theories. It is then obvious that if the superpoten-
tial is purely a polynomial in the chiral superfields, then the interactions are
polynomial too.

4.2.3 Equations of motion for chiral superfields

We start by noticing a subtlety, which might have actually already puzzled
the reader: The integrals over G-odd variables act as derivations. Indeed, we
have ∫

dθθ = 1,

∫
dθ1 = 0
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in the same way as
∂

∂θ
θ = 1,

∂

∂θ
1 = 0.

In an action (i.e. under a spacetime integral), we can even go further. We
have that∫

d4xD̄α̇D̄
α̇Y =

∫
d4x(∂̄α̇∂̄

α̇Y + ∂µv
µ) ≡

∫
d4x∂̄α̇∂̄

α̇Y = −4

∫
d4xd2θ̄Y,

where we have used the fact that ∂̄2θ̄2 = −4 while
∫
d2θ̄θ̄2 = 1.

More interestingly, the converse is also true:∫
d4xd2θd2θ̄Y = −1

4

∫
d4xd2θD̄2Y. (4.30)

The right hand side now looks like an f -term, being integrated over only
chiral superspace. Indeed, D̄2Y is a chiral superfield, since D̄α̇D̄

2Y = 0 just
because D̄α̇D̄β̇D̄γ̇ ≡ 0.

However, in the usual terminology for the action of a chiral superfield, we
will not call the above a true f -term, since it can be reexpressed as a d-term.
This is not always possible, of course. An f -term like Φ2 cannot be rewritten
(locally) as a d-term.

We can use the trick above to write the equations of motion in a SUSY
covariant way. We rewrite the action as

S =

∫
d4x

(∫
d2θd2θ̄ΦΦ̄ +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄)

)
=

∫
d4x

[∫
d2θ

(
−1

4
ΦD̄2Φ̄ +W (Φ)

)
+

∫
d2θ̄W̄ (Φ̄)

]
,

so that
δS

δΦ
= 0 ⇔ −1

4
D̄2Φ̄ +W ′(Φ) = 0. (4.31)

As we show below, it is a simple matter to see that D̄2 contains, for instance,
a ∂µ∂µ operator. These are the equations of motion of the Wess-Zumino
model, written in a manifestly SUSY covariant way.

Let us concentrate on the free case (that is, for W = 0). The equations
of motion are:

D2Φ = 0.
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Notice first that D2Φ is an antichiral superfield, DαD
2Φ ≡ 0. Hence it can

be expanded as

D2Φ = a(ȳ) +
√

2θ̄χ̄(ȳ) + θ̄2b(ȳ),

where

ȳµ = xµ − iθσµθ̄ = yµ − 2iθσµθ̄.

We can start by writing Φ in terms of ȳ:

Φ = φ(ȳ + 2iθσµθ̄) +
√

2θψ(ȳ + 2iθσµθ̄) + θ2f(ȳ + 2iθσµθ̄)

= φ(ȳ) + 2iθσµθ̄∂µφ(ȳ)− 4θσµθ̄θσν θ̄∂µ∂νφ(ȳ)

+
√

2θψ(ȳ) + 2
√

2iθσµθ̄θ∂µψ(ȳ) + θ2f(ȳ)

= φ(ȳ) + 2iθσµθ̄∂µφ(ȳ)− θ2θ̄2∂µ∂
µφ(ȳ)

+
√

2θψ(ȳ) + i
√

2θ2θ̄σ̄µ∂µψ(ȳ) + θ2f(ȳ)

Now, we can use the relations Dαθ̄
α̇ = 0, Dαȳ

µ = 0 and Dαθ
β = δβα.

We obtain

DαΦ = 2iσµαα̇θ̄
α̇∂µφ(ȳ)− 2θαθ̄

2∂µ∂
µφ(ȳ) +

√
2ψα(ȳ)

+2
√

2iθαθ̄σ̄
µ∂µψ(ȳ) + 2θαf(ȳ),

DαDαΦ = 4θ̄2∂µ∂
µφ(ȳ)− 4

√
2iθ̄σ̄µ∂µψ(ȳ)− 4f(ȳ).

This is indeed an antichiral superfield. Then the superfield equations of
motion imply

D2Φ = 0 ⇔ ∂µ∂
µφ = 0, σ̄µ∂µψ = 0, f = 0. (4.32)

As it should be obvious by now, there are no surprises and we recover what
we expected.

4.3 Real superfields

We consider now a different restriction on a general superfield Y , that will
eventually lead to the field content of the vector multiplet.

Recall that a gauge vector Aµ is real, while all components of a chiral
superfield must be complex. In other words, it is obvious that we cannot
build a chiral superfield such as Φµ = Aµ + θλµ + θ2fµ.
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Consider instead the real projection on Y : let us call V a (generically
matrix-valued) superfield such that

V = V †. (4.33)

On a general superfield

Y = φ+ θη + θ̄χ̄+ θ2m+ θ̄2n+ θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θψ +
1

2
θ2θ̄2d,

the condition (4.33) implies

φ = φ†, η = χ, m = n†, Aµ = A†µ, λ = ψ, d = d†.

Thus, the real superfield is given by

V = φ+ θχ+ θ̄χ̄+ θ2m+ θ̄2m† + θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2d, (4.34)

with φ, Aµ and d real and m complex. (We have slightly adjusted the conven-
tions for later convenience, i.e. for the sake of comparison with the notation in
the previous chapter.) This gives off-shell a total of 8 bosonic and 8 fermionic
degrees of freedom (χ and λ are Weyl spinors).

Though we have reduced by half the number of degrees of freedom with
respect to a general superfield, it is still more than what we had in the
(abelian) vector multiplet. However recall that, as we had discussed there,
the gauge symmetry was crucial in giving the right balance of degrees of
freedom. Since Aµ is in the game, gauge symmetry is bound to appear.

4.3.1 Gauge symmetry and the vector multiplet

Let us first recall some basics about gauge symmetries, and how they trans-
late to a supersymmetric theory. A gauge symmetry is the invariance of the
theory under local, i.e. spacetime dependent, transformations

φ(x)→ eiα(x)φ(x). (4.35)

This should be true for all the components of a given multiplet, since a
gauge symmetry is supposed to commute with supersymmetry (otherwise the
latter has to become local too). Then, taking for instance a scalar muliplet,
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one would like to generalize the above transformation to a chiral superfield.
However

Φ(y, θ)→ eiα(x)Φ(y, θ)

cannot work since it implies (4.35) but also, as its θθ̄ component, ∂µφ(x)→
eiα(x)∂µφ(x) which is not consistent. In other words the transformed object
is no longer a chiral superfield.

The way to cure this problem is obvious: we have to promote the gauge
parameter to a chiral superfield Λ(y, θ) so that

Φ(y, θ)→ eiΛ(y,θ)Φ(y, θ). (4.36)

Now a chiral superfield correctly trasnforms into a chiral superfield (indeed,
we have seen that any product of chiral superfields is a chiral superfield).

Expanding the gauge parameter chiral superfield, we have

Λ(y, θ) = α(y) + θξ(y) + θ2A(y).

Note that α must be complex, hence for the time being it looks like we are
enlarging gauge invariance to a complexified gauge group.

In generalizing the gauge parameter to a chiral superfield, we see that the
kinetic term for Φ is no longer invariant. Indeed

Φ̄Φ→ Φ̄e−iΛ̄eiΛΦ 6= Φ̄Φ.

It would only work for Λ = α real. However we should not actually expect
the free kinetic term to be invariant under a gauge symmetry. For a scalar
field, ∂µφ

∗∂µφ is not invariant under (4.35). One has instead to introduce a
connection Aµ and a covariant derivative

Dµ = ∂µ − iAµ

so that (4.35) is accompanied by

Aµ → Aµ + ∂µα

and as a result

Dµφ(x)→ eiα(x)Dµφ(x).

Then (Dµφ)∗Dµφ is invariant under gauge transformations.



74 CHAPTER 4. SUPERSPACE AND SUPERFIELDS

Actually, following the same reasoning for superfields is even simpler.
In order to render Φ̄Φ invariant, we introduce a superfield connection eV

between Φ̄ and Φ, so that the kinetic term becomes

Φ̄eV Φ.

It is invariant under (4.36) provided

eV → eiΛ̄eV e−iΛ. (4.37)

Note that the above transformation implies, for the hermitian conjugate su-
perfield

eV
† → eiΛ̄eV

†
e−iΛ.

Thus V † transforms in the same way as V , and it is most economical to
choose a real superfield V = V † as the superfield connection.

Since Λ is a chiral superfield, it has 4 + 4 degrees of freedom off-shell. It
can then be used to reduce the 8 + 8 degrees of freedom of V = V † to a total
of 4 + 4 off-shell but gauge-fixed degrees of freedom, exactly as in the vector
multiplet.

Let us take now for simplicity V to be a single (abelian) superfield. Then
ordering of the (super)fields does not matter and the transformation law
reads

V → V − i(Λ− Λ̄)

or as a (gauge) variation

δV = −i(Λ− Λ̄). (4.38)

If we expand Λ as usual (see (4.23)), we obtain

δV = −i(α− α∗) + θσµθ̄∂µ(α + α∗) +
i

4
θ2θ̄2∂µ∂

µ(α− α∗)

−iθξ + iθ̄ξ̄ +
1

2
θ2θ̄σ̄µ∂µξ −

1

2
θ̄2θσµ∂µξ̄

−iθ2A+ iθ̄2A∗.
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We can read the gauge transformations for every component:

δφ = −i(α− α∗)
δχ = −iξ
δm = −iA
δAµ = ∂µ(α + α∗)

δλ = − i
2
σµ∂µξ̄

δd =
i

2
∂µ∂

µ(α− α∗).

We immediately observe that the above transformations are compatible with
φ, Aµ and d being real. We can also perform a redefinition

λ → λ′ = λ+
1

2
σµ∂µχ̄,

d → d′ = d+
1

2
∂µ∂

µφ,

so that now in terms of these new component fields the transformations read

δλ′ = 0

δd′ = 0.

It is rather obvious that we can perform a (partial) gauge fixing as follows:
We use Imα to set φ = 0, ξ to set χ = 0 and A to set m = 0. In other words,
we set to zero all the component fields in V that transform by a shift without
derivatives.

We are left with

V = θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+ 1
2
θ2θ̄2d. (4.39)

This is the so-called Wess-Zumino gauge. The residual gauge symmetry is
only the usual one acting on the vector Aµ and parametrized by the real part
of α

δAµ = ∂µ(α + α∗).

This can be used to gauge away one last (off-shell) degree of freedom from
Aµ. We are thus left with the exact field content of the previously discussed
theory of the vector multiplet.
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We can now derive the SUSY variations of the components of such a
(gauge fixed) real superfield, and match them with those of the vector mul-
tiplet that we presented in the previous chapter. We start from

δSUSY V = i(εQ+ ε̄Q̄)V.

A subtlety concerns the fact that we will need to introduce compensating
gauge transformations, since obviously the V in the Wess-Zumino (WZ)
gauge (4.39) is not a proper superfield. Then new components will be gen-
erated by a supersymmetry transformation. A gauge transformation will be
needed in order to bring back V in WZ-gauge. In particular note that if δχ is
generated, the compensating gauge transformation will also generate a term
proportional to

i

2
θ̄2θσµ∂µδχ̄+ c.c.

The SUSY variation reads

δSUSY V =
(
ε∂ − ε̄∂̄ + i(θσµε̄− εσµθ̄)∂µ

)
V

= εσµθ̄Aµ + 2iεθθ̄λ̄− iθ̄2ελ+ θεθ̄2d

+θσµε̄Aµ + iθ2ε̄λ̄− 2iθ̄ε̄θλ+ θ2θ̄ε̄d

+iθσµε̄θσν θ̄∂µAν + θσµε̄θ̄2θ∂µλ

−iεσµθ̄θσν θ̄∂µAν + εσµθ̄θ2θ̄∂µλ̄.

Note that it is real, so that the reality condition indeed commutes with SUSY
transformations.

From the by now familiar manipulation θαθ̄α̇ = 1
2
θσµθ̄σ

µ
αα̇, we have that,

for instance
εθθ̄λ̄ = 1

2
θσµθ̄εσ

µλ̄.

We thus derive

δSUSYAµ = iεσµλ̄− iλσµε̄ = iε̄σ̄µλ− iλ̄σ̄µε, (4.40)

which correctly reproduces the variation given in (3.16).
Another Fierz identity yields

εσµθ̄θ2θ̄∂µλ̄ = −1
2
θ̄2εσµ∂µλ̄,

so that we further get

δSUSY d = ε̄σ̄µ∂µλ− εσµ∂µλ̄, (4.41)
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again in agreement with (3.19).

As anticipated, in order to obtain the variation of λ we need to pay extra
attention. First of all we have the identity

εσµθ̄θσν θ̄∂µAν = 1
2
εσµσ̄νθθ̄2∂µAν = 1

2
θ̄2θσν σ̄µε∂µAν ,

so that

δSUSY V = θ̄2θ

(
− i

2
σν σ̄µε∂µAν + εd

)
+ . . . (4.42)

However we also have

δSUSY V = θσµε̄Aµ − θ̄σ̄µεAµ + · · · = θδSUSY χ+ θ̄δSUSY χ̄+ . . .

from which we establish

δSUSY χ̄ = −σ̄µεAµ.

We thus need a compensating gauge transformation such that

δgaugeV = θ̄δgaugeχ̄+
i

2
θ̄2θσµ∂µδgaugeχ̄+ . . .

= θ̄σ̄µεAµ +
i

2
θ̄2θσµσ̄νε∂µAν + . . . (4.43)

Combining the above gauge variation with (4.42), we restore V to the WZ
gauge and get

δtotV = θ̄2θ

[
i

2
(σµσ̄ν − σν σ̄µ) ε∂µAν + εd

]
+ . . .

and we eventually recover the variation (3.17)

δtotλ = −σµνεFµν + iεd. (4.44)

We have thus recovered the supersymmetric variations discussed previ-
ously, confirming that the real superfield V = V †, in the WZ gauge, is the
correct way of assembling in a manifestly supersymmetric fashion the fields
of the vector supermultiplet.
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4.3.2 The action and the gaugino chiral superfield

It is now our duty to write the action for the vector multiplet degrees of
freedom in a manifestly SUSY invariant way.

We have the real superfield V at our disposal but it is easy to understand
that it is not the best choice. For instance, it contains a “bare” Aµ, so it is
not gauge covariant.

In other words, since V transforms as

eV → eiΛ̄eV e−iΛ,

it is impossible to build gauge invariant quantities by taking traces of prod-
ucts of eV , for instance. What we need is an object which transforms as

V → eiΛVe−iΛ,

i.e. holomorphically, so that for instance trV2 is gauge invariant.
Clearly, V must be a chiral superfield. Hence, we would like to build a

chiral superfield out of the real superfield V .
By inspecting the SUSY variations of the components of V , we note that

δλ = (−σµνFµν + id) ε

is reminiscent of the variation of the lowest component of a chiral superfield,

δφ =
√

2ψε,

in that it only depends on ε. Then, λ should be the spin-1
2

lowest component
of a chiral superfield. By substituting

φ→ λ,
√

2ψ → −σµνFµν + id

we get

Wα = λα + (−σµναβFµν + idδβα)θβ + . . . (4.45)

Inspecting now also the variations for d and Aµ, see (4.40) and (4.41), we see
that there are two terms, proportional to ε and ε̄ respectively. Recall that
the f -term appears in

δψ =
√

2iσµε̄∂µφ+
√

2εf,
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in the term proportional to ε. Hence, from (4.41) for instance, we expect
that f ∝ σµ∂µλ̄.

Instead of going through all the algebra, we now define Wα directly from
V as a superfield equation.

We know that the lowest component of Wα is λα, the coefficient of θ̄2θα

in V . Then we should be able to obtain it by applying the operator D̄2Dα

on V . Indeed

D̄2Dα(θ̄2θλ) = ∂̄2∂α(θ̄2θλ) + . . . = −4λα + . . .

Thus we define

Wα = − i
4
D̄2DαV. (4.46)

It is a chiral superfield because D̄3 = 0. We will often refer to it as the
gaugino superfield.

Analogously we define the anti-chiral superfield

W̄α̇ = − i
4
D2D̄α̇V = λ̄α̇ + . . . = (Wα)∗. (4.47)

(Note that in the same way as (∂α)∗ = −∂̄α̇, we also have that (Dα)∗ = −D̄α̇.)
It is best to compute Wα in the WZ-gauge. We will later show that it is

gauge covariant (and thus gauge invariant in the abelian case), so that the
result of this computation extends to any gauge.

Since Wα is a chiral superfield, let us start by writing all fields in terms
of yµ, that is we expand xµ = yµ − iθσµθ̄:

V = θσµθ̄Aµ − iθσµθ̄θσν θ̄∂µAν + iθ2θ̄λ̄− iθ̄2θλ+ 1
2
θ2θ̄2d

= θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+ 1
2
θ2θ̄2(d− i∂µAµ),

where all fields are intended as depending on y. As usual we recall that

D̄α̇θ
β = 0, D̄α̇θ̄

β̇ = δβ̇α̇, D̄α̇y
µ = 0, and also Dαθ

β = δβα, Dαθ̄
β̇ = 0 and

Dαy
µ = 2iσµαα̇θ̄

α̇. We compute

DαV = σµαα̇θ̄
α̇Aµ + 2iθαθ̄λ̄− iθ̄2λα + θαθ̄

2(d− i∂µAµ)

+2iσµαα̇θ̄
α̇θσν θ̄∂µAν − 2σµαα̇θ̄

α̇θ2θ̄∂µλ̄.

Now, D̄2 will select only the terms with two θ̄s:

D̄2DαV = 4iλα − 4θα(d− i∂µAµ) + 4iεα̇β̇σµαα̇θ
βσν

ββ̇
∂µAν − 4εα̇β̇σµαα̇θ

2∂µλ̄β̇

= 4iλα − 4θα(d− i∂µAµ)− 4i(σµσ̄ν)α
βθβ∂µAν − 4θ2σµαα̇∂µλ̄

α̇

= 4iλα − 4θαd− 4iσµνα
βθβFµν − 4θ2σµαα̇∂µλ̄

α̇,



80 CHAPTER 4. SUPERSPACE AND SUPERFIELDS

where we have used σµσ̄ν = 2σµν + ηµν .
We thus have

Wα = λα − σµναβθβFµν + iθαd+ iθ2σµαα̇∂µλ̄
α̇. (4.48)

In the abelian case, the above expression is obviously gauge invariant. In the
non-abelian case, we have to write a more general expression for the gaugino
superfield

Wα = − i
4
D̄2
(
e−VDαe

V
)
. (4.49)

Under a gauge transformation

Wα → − i
4
D̄2
[
eiΛe−V e−iΛ̄Dα

(
eiΛ̄eV e−iΛ

)]
= − i

4
D̄2
[
eiΛe−VDα

(
eV e−iΛ

)]
= − i

4
eiΛD̄2

[
e−V

(
Dαe

V e−iΛ + eVDαe
−iΛ)]

= − i
4
eiΛD̄2

(
e−VDαe

V
)
e−iΛ − i

4
eiΛD̄2Dαe

−iΛ

= eiΛWαe
−iΛ +

i

4
eiΛD̄β̇{Dα, D̄β̇}e

−iΛ

= eiΛWαe
−iΛ,

where we have repeatedly used that DαΛ̄ = 0 and D̄α̇Λ = 0, and also that
[D̄γ̇, {Dα, D̄β̇}] = 0 in the last equality.

We have thus shown that Wα is gauge covariant

Wα → eiΛWαe
−iΛ. (4.50)

We obtain a Lorentz invariant object from Wα by taking its square, which is
also gauge covariant:

WαWα → eiΛWαWαe
−iΛ.

Hence, we see that its trace is both Lorentz and gauge invariant, and is
perfectly suited to appear in an action. It is a chiral superfield, and as a
consequence ∫

d4xd2θtrWαWα
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is also manifestly SUSY invariant.

Let us do some power counting. First of all [W ] = [λ] = M3/2. (As a
side remark, note that of course [V ] = M0 since it appear in an exponential.)
Thus [W2] = M3 and [

∫
d2θW2] = M4 as it befits a Lagrangian density. It

is easy to realize that this is actually the only option at all, at least for a
renormalizable theory of course.

We then set out to compute WαWα, and for the present we stick to the
abelian case. We are actually interested only in the θ2 term:

WαWα = 2iλαθ2σµαα̇∂µλ̄
α̇ + θβ(σµνβ

αFµν + idδαβ )(−σρσαγFρσ + idδγα)θγ + . . .

= 2iθ2λσµ∂µλ̄− θσµνσρσθFµνFρσ − θ2d2 + . . .

= θ2
(
2iλσµ∂µλ̄− 1

2
σµνβ

ασρσα
βFµνFρσ − d2

)
+ . . . ,

where note that εαβσµνβ
γθγ = −θβσµνβα.

Now recall the definition of the (anti)self-dual tensors

F±µν = Fµν ±
i

2
εµνρσF

ρσ,

which are in the (1, 0) and (0, 1) representations of SU(2)×SU(2)∗. Actually,

it is fairly easy to realize that it is precisely σµνβ
αFµν and σ̄µνβ̇α̇Fµν that

project Fµν on these two irreducible representations. Hence, we know that
there will be a relation such as

σµνβ
ασρσα

βFµνFρσ ∝ F±µνF
±µν ,

where we still have to fix the constant of proportionality and the choice of
sign (since they are heavily convention-dependent). First, take

F±µνF
±µν =

(
Fµν ±

i

2
εµνρσF

ρσ

)(
F µν ∓ i

2
εµνλτFλτ

)
= FµνF

µν ∓ iεµνρσF µνF ρσ +
1

4
2(δλρδ

τ
σ − δλσδτρ)F ρσFλτ

= (ηµρηνσ − ηµσηνρ ∓ iεµνρσ)FµνFρσ.

We thus learn that

σµνβ
ασρσα

β = a(ηµρηνσ − ηµσηνρ ∓ iεµνρσ).
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We now fix a and the relative sign by inserting specific values for the Lorentz
indices. For instance:

trσ03σ03 =
1

4
trσ0σ̄3σ0σ̄3 =

1

4
tr τ 2

3 =
1

2
≡ aη00η33 = −a,

(recall that τi are the Pauli matrices) so that a = −1
2
, and

trσ03σ12 =
1

8
trσ0σ̄3(σ1σ̄2 − σ2σ̄1)

= −1

8
tr τ3[τ1, τ2] = − i

4
tr τ 2

3 = − i
2
≡ ± i

2
ε0312 = ± i

2
.

It is then the lower sign which is the correct one.
Thus

σµνβ
ασρσα

β = −1

2
(ηµρηνσ − ηµσηνρ)− i

2
εµνρσ.

As a result,

σµνβ
ασρσα

βFµνFρσ = −FµνF µν − i

2
εµνρσFµνFρσ,

and finally

WαWα = θ2

(
2iλσµ∂µλ̄+

1

2
FµνF

µν +
i

4
εµνρσFµνFρσ − d2

)
+ . . . (4.51)

By simply taking the complex conjugate we also obtain

W̄α̇W̄ α̇ = θ̄2

(
−2i∂µλσ

µλ̄+
1

2
FµνF

µν − i

4
εµνρσFµνFρσ − d2

)
+ . . . (4.52)

Eventually, the action is given by

S =

∫
d4x

(
−1

4

∫
d2θWαWα −

1

4

∫
d2θ̄W̄α̇W̄ α̇

)
(4.53)

=

∫
d4x

(
−1

4
FµνF

µν +
1

2
d2 − i

2
λσµ∂µλ̄+

i

2
∂µλσ

µλ̄

)
=

∫
d4x

(
−1

4
FµνF

µν +
1

2
d2 − iλ̄σ̄µ∂µλ

)
,

exactly what we had before, see (3.20).
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Let us write the manifestly SUSY invariant action of a vector multiplet
in full generality, that is we allow for a non-abelian gauge group and also for
a parity-violating term in the action. The Lagrangian density is then

L = −τ
2

∫
d2θtrWαWα −

τ ∗

2

∫
d2θ̄tr W̄α̇W̄ α̇, (4.54)

with conventionally

τ =
1

g2
− i Θ

8π2
, (4.55)

so that

L = − 1

2g2
trFµνF

µν − Θ

32π2
εµνρσFµνFρσ + . . .

4.3.3 Equations of motion for real superfields

In order to derive equations of motion from (4.53), we should vary it with
respect to V . Then we have

δS = −1

2

∫
d4x

(∫
d2θWαδWα +

∫
d2θ̄W̄α̇δ̄W α̇

)
=

i

8

∫
d4x

(∫
d2θWαD̄2DαδV +

∫
d2θ̄W̄α̇D

2D̄α̇δV

)
= − i

2

∫
d4xd2θd2θ̄

(
WαDαδV + W̄α̇D̄

α̇δV
)

=
i

2

∫
d4xd2θd2θ̄

(
DαWα + D̄α̇W̄ α̇

)
δV.

Thus, the equations of motion are

DαWα = −D̄α̇W̄ α̇, (4.56)

or, since (DαWα)∗ = −D̄α̇W̄ α̇, equivalently

ImDαWα = 0.

However, the superfield Wα verifies a relation, due to its definition in terms
of V . If we define

{Dα, D̄α̇} = 2iσµαα̇∂µ ≡ vαα̇,



84 CHAPTER 4. SUPERSPACE AND SUPERFIELDS

then it is simple to see that

DαD̄2Dα = −DαD̄α̇D̄
α̇Dα = D̄α̇DαD̄

α̇Dα−vαα̇D̄α̇Dα = D̄2D2−2vαα̇D̄
α̇Dα,

and similarly

D̄α̇D
2D̄α̇ = −D̄α̇DαDαD̄α̇ = D̄α̇DαD̄α̇Dα− vαα̇D̄α̇Dα = D̄2D2− 2vαα̇D̄

α̇Dα

so that we have the identity

DαD̄2DαV = D̄α̇D
2D̄α̇V

which in terms of the gaugino superfield reads

DαWα = D̄α̇W̄ α̇ (4.57)

or
ReDαWα = 0.

This is a consequence of the definition of Wα and hence must be akin to
Bianchi identities for the gauge field strength.

It is an obvious consequence of the above that imposing DαWα = 0 will
contemporarily set both the equations of motion and the Bianchi identities
to zero.

Noticing again that Dαθβ = −δαβ and Dαyµ = −2iθ̄α̇σ̄
µα̇α, let us compute

DαWα = σµνα
αFµν − 2id+ 2iθσµ∂µλ̄

−2iθ̄σ̄µ∂µλ+ 2iθ̄σ̄µσρσθ∂µFρσ + 2θ̄σ̄µθ∂µd+ 2θ2θ̄σ̄µσν∂µ∂νλ̄.

The first term vanishes because the Lorentz generators are traceless. Further,
we see that d, σµ∂µλ̄ and σ̄µ∂µλ all belong to the imaginary part of DαWα

and hence are correctly set to zero when imposing the equations of motion
of the superfield. This also implies that the last two terms vanish.

For the terms involving Fρσ we see that

ImDαWα = 0 ⇒ θ̄(σ̄µσρσ − σ̄ρσσ̄µ)θ∂µFρσ = 0

ReDαWα = 0 ⇒ θ̄(σ̄µσρσ + σ̄ρσσ̄µ)θ∂µFρσ = 0.

Now, using the usual Fierz rearrangements, we have that

θ̄σ̄µσρσθ = −1
2
θσν θ̄trσ

ν σ̄µσρσ

= −1
2
θσν θ̄tr (2σνµσρσ + ηνµσρσ)

= θσν θ̄trσ
µνσρσ

= −θσν θ̄(ηµρηνσ − ηµσηνρ + iεµνρσ).
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Eventually, we have

DαWα = θσµθ̄ (−4i∂ρF
ρµ − 2εµνρσ∂νFρσ) + . . . ,

so that as expected

ImDαWα = 0 ⇔ ∂µF
µν = 0

ReDαWα = 0 ⇔ ∂[µFρσ] = 0.

We have thus correctly extracted from the equations of motion and Bianchi
identities of the real superfield, the equations of motion and Bianchi identities
of the vector multiplet component fields.

4.3.4 Fayet-Iliopoulos term

For completeness, we must point out here that there is yet another gauge
invariant action term that can be built from V . It is just its d component,
which is truly gauge invariant only in the abelian case of course (otherwise it
transforms in the adjoint representation). This is called the Fayet-Iliopoulos
term, and is written as

LFI = ξ

∫
d2θd2θ̄V = ξd. (4.58)

It is trivially SUSY invariant and Lorentz invariant. For a free vector model,
it just shifts the on-shell value of d (and, as we will see later, most importantly
also the vacuum energy). Though it may look like just an odd curiosity to
be dismissed as irrelevant, we will see that it may play an important role in
the context of models of spontaneous supersymmetry breaking.
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Chapter 5

Supersymmetric gauge theories

Having now developped all the tools necessary to build any supersymmetric
field theory, in this chapter we start studying physically relevant such theo-
ries. We will write the most general supersymmetric gauge theory coupled
to matter (super)fields. One obvious application is to the minimal super-
symmetric extension of the Standard Model of particle physics, also known
as MSSM. We will also review in more detail some subsectors of it, such
as Super-QCD (SQCD). In passing, we will introduce the important con-
cept of the moduli space of vacua and discuss global symmetries, including
R-symmetry which is specific to supersymmetric theories.

5.1 Most general SUSY gauge theory with

matter

In the previous chapter, we have introduced and reviewed both chiral su-
perfields and real superfields. Our aim now is to combine them into gauge
theories with matter. What we really mean by “gauge theories with mat-
ter” is the sort of theories that we encounter in the Standard Model (SM),
that is gauge bosons interacting with fermions, and possibly scalars, which in
their turn interact through Yukawa or quartic couplings. Hence, the “gauge
theory” part has to include gauge bosons, while the “matter” part usually
includes fermions (we are all made of fermions after all..).

The first possibility that comes to mind is that the real superfield already
includes both gauge bosons and fermions. Indeed, the fermionic partner of
the gauge boson Aµ, which we call the gaugino λ, could be considered as

87



88 CHAPTER 5. SUPERSYMMETRIC GAUGE THEORIES

“matter”. It has however a strong restriction, which is the one of having to
belong to the adjoint representation of the gauge group. This is, in partic-
ular, not the case for any matter field of the SM. Thus, if we want to have
matter fields in different representations, we must fit them in additional chi-
ral superfields. This is actually not a real surprise, since we have already
seen how to couple chiral superfields to real superfields: we introduced the
latter precisely by requiring gauge invariance of the chiral superfield kinetic
term.

We can then write the most general manifestly SUSY invariant action
with gauge and matter fields as

S =

∫
d4x

{∫
d2θd2θ̄ Φ̄eV Φ− τ

2

∫
d2θ trWαWα −

τ ∗

2

∫
d2θ̄ tr W̄α̇W̄ α̇

+

∫
d2θ trW (Φ) +

∫
d2θ̄ tr W̄ (Φ̄)

}
. (5.1)

Here we are taking the gauge group to be a generic one, typically non-abelian
and not necessarily simple (hence, we will generically have several different
gauge couplings). The superfield V is then really a hermitian matrix V =
VaTa, with Ta = T †a the generators of the gauge group.

In the term Φ̄eV Φ the generators are taken in the representation of the
matter fields, which is generically reducible (often, quantum consistency does
not allow the matter fields to be in a single irreducible representation). The
generators Ta act on the matter superfields as

(Ta)
i
jΦ

j,

where a runs over all the generators of the gauge group, while i and j run
over all the components of the representation to which Φ belongs. Then Φ̄
is in the conjugate representation

Φ̄i(Ta)
i
j.

We thus write Φ̄eV Φ really as a shorthand for

Φ̄i(e
V )ijΦ

j.

Since we have that V = VaTa, we can also write Wα =WαaTa. It follows
that

trWαWα =Wα
aWαbtrTaTb =Wα

aWαb
1
2
δab = 1

2
Wα

aWαa.
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We have used the convention that

trTaTb = 1
2
δab

when Ta are the generators of the fundamental representation of the gauge
group. In this way, the gauge kinetic terms can be rewritten as

L = −τ
4

∫
d2θWα

aWαa −
τ

4

∗
∫
d2θ̄Wα̇aW̄ α̇

a .

Some more attention must be paid to the matter superpotential. By
trW (Φ) we mean that it must, of course, be gauge invariant. However note
that gauge invariance cannot be achieved as in the kinetic term, since we
cannot use Φ̄. For instance, in order to write a quadratic gauge invariant,
the representation of the gauge group must be real (more precisely, self-
complex conjugate). In other words, the reducible representation of Φ should
split into irreducible representations plus their conjugates, and possibly some
irreducible self-conjugate representations like the adjoint. (Of course, we have
SU(N) gauge groups in the back of our minds most of the time. With SO(N)
or Sp(N) gauge groups the situation is simpler.)

Let us recall very briefly some basic facts about Lie algebras. Given a set
of generators Ta = T †a satisfying the commutation relations

[Ta, Tb] = ifabcTc,

where the structure constants fabc are real, it is easy to see that by taking
the complex conjugate we obtain

[T ∗a , T
∗
b ] = −ifabcT ∗c ,

that is, the generators −T ∗a also satisfy the same commutation relations.
They are the generators of the conjugate representation. If Ta = −T ∗a the
representation is self-conjugate. For instance, taking the adjoint representa-
tion where

(Ta)bc = ifabc

we see that it satisfies T ∗a = −Ta.
Thus, to come back to the problem of writing gauge invariant superpo-

tentials, we have just learned that if Φ is in the adjoint representation, that
is it transforms as

Φ→ eiΛΦe−iΛ,
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then
tr Φ2

is a gauge invariant term, as well actually as any term like tr Φn more gen-
erally. If on the other hand Φ is in the fundamental representation, we
must have another chiral superfield Φ̃ in the anti-fundamental representa-
tion. They transform as

Φ→ eiΛΦ, Φ̃→ Φ̃e−iΛ,

so that
Φ̃Φ

is gauge invariant.
There can be other gauge invariants in some gauge groups, like for in-

stance εi1...iNΦi1 . . .ΦiN in SU(N). However one must pay special attention
to the statistics, since many such invariants could just vanish because of it.

5.1.1 An abelian example: SQED

We consider now a simple example of a SUSY gauge theory with matter. It
is the one of the supersymmetric version of QED, usually denoted by SQED.
More specifically, it is a SUSY version of an abelian U(1) gauge theory cou-
pled to charged fermions e+ and e−, the positron and the electron. In addition
to the usual particle content of QED of photon, positron and electron, re-
spectively associated to the fields Aµ, ψ and ψ̃ (note that we have split the
conventional Dirac fermion of QED in its two Weyl components), we have
also a fermionic field λ corresponding to the photino, and two scalar fields
φ and φ̃ which correspond to the spositron and selectron, the two bosonic
superpartners of the positron and the electron.

We know that the “positron” and the “electron” transform as

ψ → eiαψ, ψ̃ → e−iαψ̃.

We will thus consider two chiral superfields Φ and Φ̃ such that the gauge
transformations read

V → V − i(Λ− Λ̄),

Φ→ eiΛΦ, Φ̃→ Φ̃e−iΛ.

Note that Φ̃ is in the conjugate representation of Φ. Hence, the action of eV

on it will be replaced by e−V
∗

= e−V .



5.1. MOST GENERAL SUSY GAUGE THEORY WITH MATTER 91

The kinetic part of the Lagrangian reads

Lkin =

∫
d2θd2θ̄

(
Φ̄eV Φ + Φ̃e−V ¯̃Φ

)
− 1

4g2

∫
d2θWαWα−

1

4g2

∫
d2θ̄ W̄α̇W̄ α̇.

(5.2)

The superpotential part, in order to be gauge invariant, must be a func-
tion of Φ̃Φ (recall that the superpotential must be a holomorphic function of
chiral superfields only). Now, since for the theory to be renormalizable the
superpotential W must be at most of mass dimension 3, i.e. at most cubic
in the matter superfields, the only term which is allowed is a mass term:

LW =

∫
d2θmΦ̃Φ +

∫
d2θ̄ m∗Φ̄ ¯̃Φ. (5.3)

Let us now compute the d-term of (5.2) in order to see explicitly the
couplings between the gauge and matter sectors. We will work in the Wess-
Zumino (WZ) gauge which we already used extensively in the previous chap-
ter, where V starts at the θθ̄ order. Note that as a consequence, V 2 is just
one term:

V 2 = θσµθ̄θσν θ̄AµAν = 1
2
θ2θ̄2AµAµ. (5.4)

Furthermore, the expansion in V stops here, indeed V 3 = 0 in the WZ-gauge.
Thus, we have that

e±V = 1± V + 1
2
V 2. (WZ gauge)

The chiral superfield kinetic term in (5.2) thus expands as

Φ̄eV Φ = Φ̄Φ + Φ̄V Φ + 1
2
Φ̄V 2Φ.

The Φ̄Φ term yields the kinetic Lagrangian of the free theory, as given for
instance in (4.26). The other two terms are computed as follows. Note first
of all that

Φ̄V Φ = (φ∗ +
√

2θ̄ψ̄ − iθσµθ̄∂µφ∗)(θσν θ̄Aν + iθ2θ̄λ̄− iθ̄2θλ+ 1
2
θ2θ̄2d) ·

· (φ+
√

2θψ + iθσρθ̄∂ρφ)
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Its d-term reads

Φ̄V Φ|θ2θ̄2 = θσµθ̄θσν θ̄(−iφ∂µφ∗Aν + iφ∗∂µφAν) + 2θψθ̄ψ̄θσµθ̄Aµ

+i
√

2φθ̄ψ̄θ2θ̄λ̄− i
√

2φ∗θψθ̄2θλ+
1

2
φ∗φθ2θ̄2d

= θ2θ̄2

{
i

2
(φ∗Aµ∂µφ− φAµ∂µφ∗) +

1

2
ψσµψ̄Aµ

− i√
2
φψ̄λ̄+

i√
2
φ∗ψλ+

1

2
φ∗φd

}
.

As for the last term, we have

Φ̄V 2Φ = θ2θ̄2 1

2
φ∗φAµAµ.

Putting all the above terms together, we obtain∫
d2θd2θ̄ Φ̄eV Φ = ∂µφ

∗∂µφ+
i

2
∂µψ̄σ̄

µψ − i

2
ψ̄σ̄µ∂µψ + f ∗f

− i
2
∂µφ

∗Aµφ+
i

2
Aµφ

∗∂µφ+
1

4
φ∗φAµA

µ − 1

2
ψ̄σ̄µψAµ

− i√
2
φψ̄λ̄+

i√
2
φ∗ψλ+

1

2
φ∗φd

=

(
∂µφ

∗ +
i

2
Aµφ

∗
)(

∂µφ− i

2
Aµφ

)
+
i

2

(
∂µψ̄ +

i

2
Aµψ̄

)
σ̄µψ − i

2
ψ̄σ̄µ

(
∂µψ −

i

2
Aµψ

)
+f ∗f +

1

2
φ∗φd− i√

2
φψ̄λ̄+

i√
2
φ∗ψλ

= Dµφ
∗Dµφ− iψ̄σ̄µDµψ + f ∗f +

1

2
φ∗φd

− i√
2
φψ̄λ̄+

i√
2
φ∗ψλ. (5.5)

In the final expression we have introduced the gauge-covariant derivatives

Dµφ = ∂µφ−
i

2
Aµφ, Dµφ

∗ = ∂µφ
∗ +

i

2
Aµφ

∗,

and similarly for ψ and ψ̄.
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In (5.5) we also note that, besides the kinetic terms for the scalars and the
fermions, we have two purely bosonic terms which, as we will see, constitute
the scalar potential, and two Yukawa-like terms (i.e. couplings between a
scalar and a fermion bilinear).

In order to make the above action look more familiar, we can introduce
the gauge coupling g (which we might want to call e in the case of QED) by
redefining the real superfield by a rescaling

V → 2gV

so that the gauge vector is similarly rescaled Aµ → 2gAµ and the covariant
derivative becomes more familiar

Dµφ→ ∂µφ− igAµφ.

Note that rescaling the whole superfield implies that we need also to rescale
the gaugino and the d-term, so that λ→ 2gλ and d→ 2gd. The final matter
and interaction Lagrangian becomes

L = Dµφ
∗Dµφ− iψ̄σ̄µDµψ + f ∗f + gφ∗φd− ig

√
2φψ̄λ̄+ ig

√
2φ∗ψλ. (5.6)

The important thing to notice is that the Yukawa couplings between the
selectron, electron and photino have their value exactly set to the one of the
gauge coupling.

Note that under V → 2gV the kinetic term WαWα + c.c. gets multiplied
by 4g2. Hence, we need also to rescale τ → 1

4
τ in order to restore the usual

normalization of the gauge sector kinetic terms. All in all we obtain for the
full Lagrangian (5.2)–(5.3) in components:

L = Dµφ
∗Dµφ− iψ̄σ̄µDµψ + f ∗f +Dµφ̃

∗Dµφ̃− i ¯̃ψσ̄µDµψ̃ + f̃ ∗f̃

+gd(φ∗φ− φ̃φ̃∗)− ig
√

2(φψ̄ − φ̃ ¯̃ψ)λ̄+ ig
√

2(φ∗ψ − φ̃∗ψ̃)λ

−1

4
FµνF

µν − iλ̄σ̄µ∂µλ+
1

2
d2

+mφf̃ +mφ̃f −mψψ̃ +m∗φ∗f̃ ∗ +m∗φ̃∗f ∗ −m∗ψ̄ ¯̃ψ.

The covariant derivatives are defined as before for φ and ψ, while we have
the opposite sign for the components of the charge conjugate superfield Φ̃,

Dµφ̃ = ∂µφ̃+ igAµφ̃
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and similarly for ψ̃. Lastly, since the photino is neutral we have Dµλ = ∂µλ.

Note that in the Lagrangian above, the terms mψψ̃+mψ̄ ¯̃ψ actually con-
stitute a Dirac mass for the electron/positron field as in ordinary QED.

We can now integrate out the auxiliary fields d and f, f ∗. For the latter,
the procedure is just the same as in the (ungauged) Wess-Zumino model. As
for the d-terms, we have

Ld =
1

2
d2 + gd(φ∗φ− φ̃φ̃∗) (5.7)

so that
δLd
δd

= 0 ⇔ d = −g(φ∗φ− φ̃φ̃∗).

Reinstating in (5.7), we obtain

Ld = −1

2
g2(φ∗φ− φ̃φ̃∗)2.

Including also the part coming from the f -terms, we finally get for the po-
tential:

V =
1

2
g2(φ∗φ− φ̃φ̃∗)2 + |m|2(φ∗φ+ φ̃φ̃∗). (5.8)

The most important feature is that there is a quartic potential for the scalars,
and its coupling is given, because of supersymmetry, by the square of the
gauge coupling. This fact of course is crucial for the cancellations that will
occur also between radiative corrections in the gauge sector, much similarly
to those happening for a theory of chiral superfields only: there the two
couplings related to each other where the Yukawa and the quartic. Here,
we have gauge couplings, Yukawa couplings (mixing matter fermions and
gaugini) and quartic couplings all functions of the same g.

5.1.2 Non-abelian gauge group

We now generalize to a non-abelian gauge group. The only real difference
will be in the gauge kinetic part, in going from Wα = − i

4
D̄2DαV to

Wα = − i
4
D̄2
(
e−VDαe

V
)
.

We have already shown above Eq. (4.50) that even in the full non-abelian
case Wα is gauge covariant,

Wα → eiΛWαe
−iΛ.
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Thus, we already know that its expression for a non-abelian gauge group must
be the one obtained from the abelian expression by the covariantization of
all the derivatives inside it. Of course, the covariant derivative in this case
should be intended in the adjoint representation.

Let us check this. In the WZ-gauge

e−VDαe
V =

(
1− V + 1

2
V 2
) (
DαV + 1

2
DαV V + 1

2
V DαV

)
= DαV + 1

2
[DαV, V ],

where the simplifications occur because V starts at the order θθ̄ while Dα

starts at the order θ̄.
We already know that

− i
4
D̄2DαV = λα − σµναβθβFµν + iθαd+ iθ2σµαα̇∂µλ̄

α̇.

We are left to compute the term with the commutator. As usual, we start
with the expression we had where all fields are function of yµ:

V = θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+ 1
2
θ2θ̄2(d− i∂µAµ).

Then we have
DαV = σµαα̇θ̄

α̇Aµ + 2iθαθ̄λ̄+ . . . ,

and therefore

[DαV, V ] = σµαα̇θ̄
α̇θβσν

ββ̇
θ̄β̇[Aµ, Aν ] + 2iθαθ̄α̇θ

βσµ
ββ̇
θ̄β̇[λ̄α̇, Aµ]

+iσµαα̇θ̄
α̇θ2θ̄β̇[Aµ, λ̄

β̇]

=
1

2
θ̄2(σµσ̄ν)α

βθβ[Aµ, Aν ] +
i

2
θ2θ̄2σµαα̇[λ̄α̇, Aµ]− i

2
θ2θ̄2σµαα̇[Aµ, λ̄

α̇]

= θ̄2σµνα
βθβ[Aµ, Aν ]− iθ2θ̄2σµαα̇[Aµ, λ̄

α̇].

Finally, we have

− i
8
D̄2[DαV, V ] =

i

2
σµνα

βθβ[Aµ, Aν ] +
1

2
θ2σµαα̇[Aµ, λ̄

α̇].

Eventually, putting all terms together, we obtain

− i
4
D̄2
(
e−VDαe

V
)

= λα − σµναβθβ
(
∂µAν − ∂νAµ −

i

2
[Aµ, Aν ]

)
+iθαd+ iθ2σµαα̇

(
∂µλ̄

α̇ − i

2
[Aµ, λ̄

α̇]

)
.
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As before, we rescale V → 2gV so that

Wα = 2g
(
λα − σµναβθβFµν + iθαd+ iθ2σµαα̇Dµλ̄

α̇
)
, (5.9)

where we have now

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ],

Dµλ̄ = ∂µλ̄− ig[Aµ, λ̄].

Note for completeness that we also have

Dµλ = ∂µλ− ig[Aµ, λ].

(Recall we then have to take τ → 1
4
τ or Wα → 1

2
Wα to restore the usual

normalization of the gauge kinetic terms.)

5.1.3 Most general action in components

To close this section, we can now write the most general action for a gauge
theory with a generically non-abelian gauge group, coupled to matter fields
in an arbitrary (reducible) representation. Writing it further in components
will highlight the couplings that it has to feature because of supersymmetry.

The manifestly supersymmetric Lagrangian is

L =

∫
d2θd2θ̄

∑
r

Φ̄re
2gVaT raΦr +

∫
d2θ trW (Φr) +

∫
d2θ̄ tr W̄ (Φ̄r)

−τ
8

∫
d2θ trWαWα −

τ

8

∗
∫
d2θ̄ tr W̄α̇W̄ α̇. (5.10)

Here the index r labels the irreducible representations into which the mat-
ter fields are decomposed. Note that Φ̄r is in the ρ∗r complex conjugate
representation. For every representation, we will label its components by
i = 1 . . . dimρr and use the convention of summing over repeated indices.



5.2. SCALAR POTENTIAL AND MODULI SPACE OF VACUA 97

Then the same Lagrangian in components reads

L =
∑
r

[
Dµφ

∗
riD

µφir − iψ̄riσ̄µ(Dµψr)
i + f ∗rif

i
r

−ig
√

2ψ̄riλ̄aT
(r)
a

i

jφ
j
r + ig

√
2φ∗riλaT

(r)
a

i

jψ
j
r + gφ∗ridaT

(r)
a

i

jφ
j
r

]
+

[∑
r

(
∂W

∂Φr

)
i

f ir −
1

2

∑
r,s

(
∂2W

∂Φr∂Φs

)
ij′
ψirψ

j′

s + c.c.

]
(5.11)

+
∑
a

(
−1

4
F a
µνF

µν
a +

1

2
dada − iλ̄aσ̄µDµλa −

Θ

64π2
g2εµνρσF a

µνF
a
ρσ

)
.

Note the two kinds of Yukawa couplings, i.e. interactions involving two
fermions and a scalar. The ones involving the gaugino have a coupling given
by g
√

2, while the ones involving only matter fermions have arbitrary cou-
plings, given by ∂3W for a renormalizable superpotential. The scalar po-
tential on the other hand is determined by the terms involving the auxiliary
fields f and d. In the next section we write it in its most general form.

5.2 Scalar potential and moduli space of vacua

The goal of this section is to analyze, through the scalar potential, the struc-
ture of the supersymmetric vacua of a generic SUSY gauge theory. We will
see instantly how this comes about. Starting from (5.11), we can solve for
the d- and f -terms, so as to find the scalar potential. The variations of the
Lagrangian are

δL
δda

= da + g
∑
r

φ∗riT
(r)
a

i

jφ
j
r,

δL
δf ir

= f ∗ri +

(
∂W

∂Φr

(φs)

)
i

.

Thus we have the following equations which fix the auxiliary fields in terms
of the scalar fields:

da = −g
∑
r

φ∗riT
(r)
a

i

jφ
j
r, (5.12)

f ∗ri = −
(
∂W

∂Φr

(φs)

)
i

. (5.13)
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Note that, because of gauge invariance of the superpotential W (Φr), its first
derivative ∂W

∂Φr
is in the conjugate representation of Φr, i.e. the same as Φ̄r.

The scalar potential is then given by

V(φr, φ
∗
r) = −Ld,f,f∗

= −
∑
r

[
f ∗rif

i
r +

(
∂W

∂Φr

)
i

f ir +

(
∂W̄

∂Φ̄r

)i
f ∗ri

]

−
∑
a

(
1

2
dada + gda

∑
r

φ∗riT
(r)
a

i

jφ
j
r

)

=
∑
r

(
∂W

∂Φr

)
i

(
∂W̄

∂Φ̄r

)i
+

1

2
g2
∑
a

(∑
r

φ∗riT
(r)
a

i

jφ
j
r

)2

.

There is actually a much simpler expression for the scalar potential. It is
simply

Vscalar =
∑
r

f ∗rif
i
r +

1

2

∑
a

dada, (5.14)

where it is understood that the auxiliary fields are solved in terms of the
scalar fields as in (5.12)–(5.13).

From both expressions above, we immediately see that

Vscalar ≥ 0,

and that the equality is satisfied only when all auxiliary fields vanish, i.e.

Vscalar = 0 ⇔ f ir = 0, da = 0 ∀ r, i, a. (5.15)

This fact is extremely relevant when one is looking for classical vacua of a
given field theory. Even when one is set to quantize the theory, a classical
vacuum is usually a good starting point. Such a vacuum is generally chosen
to be Poincaré invariant. Hence, we must set to zero all the fields which are
not Lorentz scalars, and the scalar vacuum expectation values (VEVs) must
be constant throughout all spacetime. The only scalars in the general theory
described here are φr, fr and da. However, if we want the vacuum to also
preserve supersymmetry, we need to set f ir = 0 and da = 0. Indeed, we recall
that non-zero VEVs such as f 6= 0 or d 6= 0 break SUSY because δψ ∝ fε
and δλ ∝ dε, see (4.24) and (4.44), while in a SUSY vacuum the variations
of all fields must vanish.
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Another way to see this is to recall what was said at the level of the
SUSY algebra. The energy of a SUSY invariant state must be zero because
essentially E ∝ QQ† and Q,Q†|0〉 = 0 imply that E|0〉 = 0.

All in all, we see that a supersymmetric ground state must have zero
energy and vanishing auxiliary fields. From the point of view of the scalar
potential (5.14), the fact that it is positive semi-definite implies that setting
f and d to zero is sufficient to find a global minimum.

To sum up, we have a SUSY vacuum if and only if there exists a config-
uration of φir such that(

∂W

∂Φr

(φs)

)
i

= 0 ∀ r, i (5.16)

and ∑
r

φ∗riT
(r)
a

i

jφ
j
r = 0 ∀ a. (5.17)

The first set of equations (5.16), often referred to as F-flatness conditions,
consists of

∑
r dimρr complex conditions, while the second set of equations

(5.17), often referred to as D-flatness conditions, consists of dimG real con-
ditions, where G is the gauge group. If there is no solution to both of these
sets of equations together, then the theory does not have a SUSY vacuum,
i.e. it breaks supersymmetry spontaneously.

Of course, if these conditions are satisfied with non-zero VEVs for a scalar
φr in a non-trivial representation of G, this will induce some spontaneous
breaking of the gauge symmetry. However this is irrelevant as far as the
supersymmetry of the vacuum is concerned, since SUSY and gauge symmetry
commute.

Let us make now some trivial remarks first.

• In a gauge theory without matter chiral superfields, there are no con-
ditions since there are simply no scalars in the theory.

• In a gauge theory with W (Φ) = 0 (in particular, all matter is massless),
only the conditions d = 0 are non-trivial.

• Conversely, in a non-gauge theory only the conditions f = 0 are im-
posed.

We can elaborate a bit further on the last situation. There are as many
conditions f ir = 0 than there are scalar fields φir. Hence, for a generic su-
perpotential, i.e. a generic function of the φir, there is always a solution to
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those complex equations. (Non-generic situations can arise because of global
symmetries, as we will see later on.) Actually, this is true even when gauge
interactions are turned on. Indeed, it may seem that the two sets of rela-
tions (5.16)–(5.17), being more numerous than the fields φir, overconstrain
the scalar VEVs and have no solutions but in very special cases. However,
gauge invariance of the superpotential W (Φ) implies there are dimG redun-
dant f -term equations among (5.16):

δgaugeW (Φr) = 0 ⇔
∑
r

(
∂W

∂Φr

)
i

δgaugeΦ
i
r = 0

⇔
∑
r

(
∂W

∂Φr

)
i

T (r)
a

i

jΦ
j
r = 0 ∀ a

⇔ f ∗riT
(r)
a

i

jΦ
j
r = 0 ∀ a.

Note that the number of redundant equations among the f -terms is the same
as the number of d-term equations.

Let us exemplify these considerations with our simple theory of SQED.
The conditions for a SUSY vacuum read

f = 0 ⇔ mφ̃ = 0,

f̃ = 0 ⇔ mφ = 0,

d = 0 ⇔ φ∗φ− φ̃φ̃∗ = 0.

Clearly, if m 6= 0, the two f -conditions imply the d-condition, and the only
vacuum is the one in which φ = 0 = φ̃.

If m = 0 we are left with only the last equation, the d-condition. Being
it one real condition on two complex constants (the components of φ and φ̃),
it necessarily leaves some fields undetermined. Essentially, it implies that
|φ|2 = |φ̃|2. Thus, if we rewrite the scalar fields as φ = ρeiϕ and φ̃ = ρ̃eiϕ̃,
the condition reads

d = 0 ⇔ ρ = ρ̃.

We seem to have a manifold of vacua parametrized by ρ, ϕ and ϕ̃. However
we have not yet taken into account the gauge transformations. They act by
the shifts

ϕ→ ϕ+ α, ϕ̃→ ϕ̃− α,
with α the real part of the lowest component of Λ. We can then use the
gauge symmetry to set ϕ = ϕ̃. After doing that, we have that the scalars
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satisfy φ = φ̃ and the gauge symmetry is completely fixed (up to a Z2 discrete
subgroup, which corresponds to taking α = π; it shifts ϕ→ ϕ+π, ϕ̃→ ϕ̃−π
while keeping φ = φ̃).

We thus observe that we are left with a one-complex dimensional manifold
of physically different vacua, parametrized by φ. The constant values that
the scalar fields take in the vacuum are referred to as moduli, and hence such
a manifold of vacua is called moduli space.

There is an alternative description of the moduli space, which is gauge
invariant. If, as in the previous description, we have φ = φ̃ 6= 0, then it
follows that φφ̃ 6= 0. The latter combination obviously parametrizes the
complex plane C. Gauge transformations change the gauge fixing condition
but leave φφ̃ invariant. Therefore, all points parametrized by different values
of φφ̃ are physically inequivalent.

5.2.1 General characterization of the moduli space

The notion of moduli space can be defined in all generality. Let us first
concentrate on a gauge theory with vanishing superpotential,

W (Φ) = 0.

Then the moduli space is defined only by the dimG real conditions da = 0.
These conditions will determine some relations among the scalar fields φir.
However, not all different configurations satisfying da = 0 are physically in-
equivalent. Those which are mapped to each other by a gauge transformation
(i.e. those belonging to the same gauge orbit) must be considered as physi-
cally equivalent. We should thus mod out the space of configurations such
that da = 0 by the equivalence classes induced by gauge transformations.
As a result, we reduce the field space by another dimG real parameters. If
we denote the moduli space of a gauge theory byM, we can summarize the
above by writing

M = {φir : da = 0}/G. (5.18)

At this point, we can suspect that we should be able to impose the D-flatness
conditions and mod out by the action of the gauge group at the same time.
Indeed, as shown in the example of SQED, the da = 0 conditions usually
fix a number of constraints on the values of |φ|, while modding out by G
eliminates the same number of phases.
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Note first of all that, as we had already remarked, if there is a super-
potential, it has to be invariant under complexified gauge transformations.
Indeed, since W (Φ) only depends on chiral superfields, the statement that it
is gauge invariant means that under a gauge transformation, all dependence
on Λ must disappear, for any Λ, in particular for a generically complex lowest
component. In other words, we act on the fields with the complexified gauge
group GC

φ→ eiλφ

with λ ∈ C instead of α ∈ R previously. Since W is a holomorphic function,
gauge invariance cannot be achieved using fields transforming with e(iα)∗ .

Let us now go back to the situation where W = 0 and see if complexified
gauge transformations can be nevertheless relevant. Consider the function

F =
∑
i

φ∗iφ
i,

where for simplicity we have bundled together all the fields in a single (re-
ducible) representation. Consider also a generator t of the gauge group G,
which can be taken for definiteness to lie in the Cartan subalgebra of G (by
the action of G itself any generator can be brought to satisfy this condition).
Under a gauge transformation along this generator we have

φi → (eiλt)ijφ
j = eiλqiφi,

with qi a positive or negative charge (t being in the Cartan subalgebra, its
action is diagonal on the φi).

Under a real gauge transformation, the function F is invariant. Under a
complex gauge transformation λ = iβ, with β ∈ R, on the other hand, we
have

F → F (β) =
∑
i

e−2βqiφ∗iφ
i.

Hence, the function F varies along the orbit of GC. If all the charges qi are
of the same sign, then F → 0 for β → ∞ or β → −∞. This means that
we are on the same complexified gauge orbit of the origin. However, for a
generic choice of φi, this is never going to be the case, at least in any theory
that makes sense at the quantum level.

Thus, if there exist qis of different sign, then F →∞ for both β → ±∞,
starting of course from a generic configuration of φi. In turn, this implies
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that there must exist a minimum of F as a function of β. It is found by
solving

∂F

∂β
= 0 ⇒

∑
i

e−2βqiφ∗i qiφ
i = 0.

In other words, we can gauge transform φi to a new value given by

φ′
i

= e−βqiφi

so that at the extremum we satisfy the condition∑
i

φ′
∗
i qiφ

′i = 0.

This means that the expectation values φ′ satisfy the D-flatness conditions.
Hence, at the minimum of F along the GC orbit, the conditions da = 0 are
satisfied. It can be shown that this minimum is moreover unique (from the
fact that ∂2F/∂β2 > 0). Since GC orbits cover all of field space, it follows
that all solutions of da = 0 are covered in this way. That is, by using complex
gauge tranformations, we can bring any configuration of φi to another of φ′i

that satisfies the D-flatness conditions.
Modding out by complexified gauge transformations is thus equivalent

to enforcing the equations da = 0 and then modding out by real gauge
transformations. Indeed, in every complex equivalence class there is one real
equivalence class consisting of solution of da = 0. An equivalent description
of the moduli space is thus

M = {φir}/GC. (5.19)

A completely gauge invariant characterization of M can be achieved by
considering gauge invariant monomials composed of the φir. Since we are
now considering complex gauge transformations, the chiral and anti-chiral
monomials must be separately gauge invariant (for instance, as we have just
seen above, φ∗φ is no longer gauge invariant). The moduli space M can be
parametrized by holomorphic (chiral) gauge invariants, possibly subject to
algebraic conditions among them. More precisely, the chiral gauge invariants
have the structure of a ring, called the chiral ring, with a number of invariants
being the generators of the chiral ring. This number (modulo the possible
relations among the generators) defines the dimension of the moduli space.
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As an example, we go back to massless SQED. We see that under U(1)C
the scalars transform as

φ→ zφ, φ̃→ z−1φ̃,

and we can always set φ = φ̃ (with a left over Z2 gauge symmetry for z = −1).
The gauge invariant description of M is given by the chiral invariant φ̃φ.
Hence we determine that for massless SQED M∼= C.

As a last remark on moduli space, we note that it is straightforward to
revert to a theory with a non-trivial superpotential W (Φr) 6= 0. Indeed, the
F-flatness conditions fr = 0 are already covariant under GC, and hence the
moduli space just becomes

MW 6=0 = {φir : f ir = 0}/GC. (5.20)

5.3 The example of SQCD

We discuss now a specific example of a non-abelian gauge theory with matter,
which is the supersymmetric version of QCD, thus called Super-QCD or
SQCD for short. It consists of a SU(Nc) gauge group, where Nc is the
number of colors, and Nf flavors, that is Nf chiral superfields Qa

i , with a =
1 . . . Nc and i = 1 . . . Nf , in the fundamental representation Nc of SU(Nc),
together with another Nf chiral superfields Q̃ı̃

a, with ı̃ = 1 . . . Nf , in the
anti-fundamental representation N̄c of SU(Nc).

Note that the generators of SU(Nc) in the fundamental and anti-fundamental
representations are related by

(T
(Nc)
A )ab = −(T

(N̄c)
A )ab, A = 1 . . . N2

c − 1.

The Lagrangian for SQCD is then simply

L =

∫
d2θd2θ̄

(∑
i

Q̄ie2gVQi +
∑
ı̃

Q̃ı̃e−2gV ¯̃Qı̃

)

−τ
8

∫
d2θ trWαWα −

τ

8

∗
∫
d2θ̄ tr W̄α̇W̄ α̇ (5.21)

+

∫
d2θ mi

ı̃Q̃
ı̃
aQ

a
i + c.c.
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The quadratic superpotential in the last line is the only renormalizable one
we can write. In the following, we will often consider the limit of massless
SQCD, that is we will set mi

ı̃ = 0.
It is instructive to consider the global symmetries of the theory above.

There is a large group of such symmetries. Indeed, when acting separately
on the indices i and ı̃ of Q and Q̃, we see that independent unitary transfor-
mations leave the kinetic term invariant. This is the end of the story if the
mass term is absent, while in its presence the symmetry group is smaller, as
we will review shortly. Hence we have the full group U(Nf )Q × U(Nf )Q̃ as
global symmetry of massless SQCD. It is usually written as

SU(Nf )Q × SU(Nf )Q̃ × U(1)B × U(1)A, (5.22)

where the action of the baryonic U(1)B is given by

Qi → eiαQi,

Q̃ı̃ → e−iαQ̃ı̃,

and the action of the axial U(1)A by

Qi → eiαQi,

Q̃ı̃ → eiαQ̃ı̃.

The names “baryonic” and “axial” are given in reference to the similar global
symmetries existing in QCD.

5.3.1 R-symmetry

In SUSY theories, there is yet another global symmetry, intimately related to
SUSY itself. Consider for instance a pure SUSY gauge theory, i.e. without
matter chiral superfields. From a non-SUSY point of view, it is a sort of
QCD theory where the matter is a fermion in the adjoint representation.
The action is clearly invariant under the global U(1) which rotates λ→ eiαλ
and keeps, obviously, Aµ fixed.

However, from the point of view of the real superfield, this U(1) rotates
differently the different components of V , and thus ofWα. This is in contrast
to the previous global symmetries that acted on the whole chiral superfields.
For instance if

Q = q +
√

2θψq + θ2fq,
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then the action of, say, U(1)A on the components is

q → eiαq, ψq → eiαψq, fq → eiαfq.

On the other hand, the gaugino superfield that we can schematically write
as W = λ+ θFµν + . . . will have a definite transformation law Wα → eiαWα

under the U(1) rotating the gaugino only if we postulate that under this U(1)
also the superspace coordinates θ transform non-trivially,

θ → eiαθ.

Note that V is left invariant.
Such a global symmetry is called an R-symmetry. Is the gauge kinetic

part of the Lagrangian invariant under the U(1)R R-symmetry? Note first
that if θ → eiαθ, then for the differential the opposite is true, dθ → e−iαdθ,
because of the relation

∫
d2θ θ2 = 1. We then observe that∫

d2θ trWαWα → e−2iα

∫
d2θ e2iαtrWαWα =

∫
d2θ trWαWα,

that is, R-symmetry is a symmetry of the gauge Lagrangian.
As for the chiral matter superfields, we can assign them an arbitrary

overall R-charge, as the latter can be anyway changed at will by redefining
the R-symmetry by linear combinations involving U(1)B and U(1)A. If we
assign them a unit R-charge, often denoted by R(Q) = 1 and R(Q̃) = 1, we
see that as superfields they transform under U(1)R as

Q → eiαQ,

Q̃ → eiαQ̃.

It looks very much like the axial symmetry U(1)A, however we have to pay
attention to the different transformation laws of the components, for instance
for Q we have

q → eiαq, ψq → ψq, fq → e−iαfq,

and similarly for Q̃.
We have to note here that, as in QCD, a linear combination of U(1)A and

U(1)R (as we have just seen, the latter is also “axial” in the QCD sense, as
far as the fermions are concerned) will be anomalous, i.e. the path integral
measure is actually not invariant under it.
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To conclude this discussion on global symmetries, it is easy to see that a
mass term as written in the last line of (5.21) preserves U(1)B and the U(1)R
as given above (note that a superpotential has to have R-charge R(W ) = 2
in order to preserve R-symmetry), while it breaks U(1)A and SU(Nf )Q ×
SU(Nf )Q̃. The latter is completely broken generically, but a subgroup can
survive for specific choices of the mass matrix. For instance, if mi

ı̃ = δiı̃ ,
then SU(Nf )Q × SU(Nf )Q̃ is broken down to SU(Nf )diag, i.e. the diagonal

SU(Nf ) which acts simultaneously on Q and Q̃ (in the fundamental and
anti-fundamental representation respectively).

5.3.2 The classical vacua of SQCD

We can consider the classical vacua of SQCD, and we stress on “classical”
because at the quantum level the story is different, much interesting, but
very much beyond the scope of this chapter (and these notes).

In presence of mass terms, the f -terms impose

mi
ı̃Q̃

ı̃
a = 0, mi

ı̃Q
a
i = 0.

If we assume that the matrixm is invertible, then we have to setQa
i = 0 = Q̃ı̃

a.
There is only one vacuum at the origin.

It is clearly more interesting to consider the case of massless SQCD, where
m = 0. The D-flatness conditions read∑

i

Q̄i
a(TA)abQ

b
i −
∑
ı̃

Q̃ı̃
a(TA)ab

¯̃Qb
ı̃ = 0, (5.23)

for A = 1 . . . N2
c − 1. The generators (TA)ab are traceless hermitian matrices.

We can then label the index A by the N2
c couples of indices cd (with one

redundancy):

(T dc )ab = δac δ
d
b −

1

Nc

δab δ
d
c .

Indeed these generators are traceless, (T dc )aa = δdc − δdc = 0. We can rewrite
then the D-flatness conditions as∑

i

Q̄i
aQ

b
i −
∑
ı̃

Q̃ı̃
a

¯̃Qb
ı̃ =

1

Nc

δbac, (5.24)

where the constant c is given by

c =
∑
i

Q̄i
aQ

a
i −

∑
ı̃

Q̃ı̃
a

¯̃Qa
ı̃ .
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One can then solve for the moduli space, but things change slightly as we
change the number of flavors, according to whether Nf < Nc or Nf ≥ Nc.
Let us just consider here the case with Nf < Nc where there is a simpler
description of the moduli space M.

The only gauge invariants that one can write are

M ı̃
i = Q̃ı̃

aQ
a
i ,

which are usually referred to as mesonic operators, though as far as the
lowest components of the superfields are concerned, they really are squark
bilinears (and not quark bilinears as are the real-life mesons of QCD). It is
only these squark bilinear “mesons” that can acquire a VEV 〈M ı̃

i 〉 6= 0 in a
SUSY vacuum.

Since all of these operators are independent, and the matrix M ı̃
i can be of

maximal rank (because Nc > Nf ), it results that they parametrize a moduli
space of complex dimension N2

f .
Now, for generic VEVs of M ı̃

i , also the squarks Qa
i are generic, and hence

we are specifying Nf different directions in SU(Nc). The remaining gauge
symmetry keeping those directions fixed is then SU(Nc −Nf ).

By the Brout-Englert-Higgs mechanism, the gauge bosons in the broken
part of the SU(Nc) gauge group acquire a mass by “eating” a scalar, to be
found among the lowest components qi, q̃

ı̃ of the quark superfields. Actually,
since a massive vector supermultiplet contains also a massive scalar (in ad-
dition to the longitudinal polarization of the vector), one complex scalar is
eaten and becomes massive for every broken gauge generator. More gener-
ally, we had already seen early on that a massive vector supermultiplet is
the result of the composition of a massless vector multiplet with a (massless)
scalar multiplet.

The number of broken generators is

N2
c − 1− (Nc −Nf )

2 + 1 = 2NcNf −N2
f

and hence the same number of chiral superfields must become massive. We
are left with

2NcNf − (2NcNf −N2
f ) = N2

f

massless chiral superfields, whose lowest components are exactly the ones
parametrizing the moduli space.

Note that the global symmetries are broken by a generic VEV 〈M ı̃
i 〉 6= 0

to the subgroup consisting only of U(1)B. For specific choices of the VEVs
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we can still have a larger global symmetry which survives, as for instance for
〈M ı̃

i 〉 = Mδ ı̃i where we still have SU(Nf )diag unbroken.

In the former, generic case, all massless modes but one are Goldstone
bosons. When a larger symmetry group is preserved, as in the latter exam-
ple, fewer of the massless modes are Goldstone bosons. Thus a moduli space
is generically larger than the space parametrized by Goldstone bosons. This
was to be expected since it is obvious from the above considerations that
the moduli space of SQCD is non-compact, while the space parametrized by
Goldstone bosons is compact, being it associated to broken compact symme-
tries.

5.4 A brief look at the MSSM

We close this chapter with a very brief description of the Minimal Supersym-
metric Standard Model, usually referred to as MSSM. It is indeed a specific
case of a gauge theory with matter like the ones considered in this chapter.
Here we will only review its field content and the tree level supersymmetric
couplings.

The key word in MSSM is “minimal”. The MSSM is directly obtained
from the Standard Model (SM) by introducing SUSY partners to every par-
ticle in the SM spectrum. There is one exception which is the Higgs sector
which, for reasons that we will explain below, we need to extend a bit further
with a second doublet.

Let us start with the gauge sector of the SM. We will have real superfields
with gauge group

SU(3)× SU(2)L × U(1)Y .

The fermionic superpartners to the usual gauge bosons are the gluinos, Winos
and Bino. (One usually talks about Winos and Bino because in real world
those are expected to have masses larger than the electroweak scale. Hence
by the time we have a Z boson and a photon the fermionic superpartners are
long gone and it makes no sense of speaking of a Zino and a photino.)

As for the fermionic sector of the SM, we associate to each fermion a
chiral superfield. It results that there will be scalar partners for all the
fermions, they are collectively called sfermions and more specifically squarks
and sleptons.

We have then the following chiral superfields, with charges under the
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gauge group
SU(3)× SU(2)L × U(1)Y

Qi (3,2,+1
6
)

Ũi (3̄,1,−2
3
)

D̃i (3̄,1,+1
3
)

Li (1,2,−1
2
)

ẽi (1,1,+1)

(5.25)

The index i = 1, 2, 3 is the family index, and since we have written all chiral
superfields, their fermionic component is always a left-handed Weyl fermion.

Note that each family is a complex, reducible representation of the gauge
group. The fact that it is complex means that supersymmetric mass terms
cannot be written, just as one cannot write mass terms for the fermions in
the SM (before electroweak symmetry breaking of course!). The components
of the chiral superfields read, for example

Qi = q̂i +
√

2θqi + . . . ,

Ũi = ûi +
√

2θũi + . . . ,

where q̂i and ûi are squarks, qi are the left-handed quarks of the SM, while
¯̃ui are the right-handed quarks of the SM, more usually written as ūi. All is
exactly similar for the (s)leptons.

We now turn to the Higgs sector in order to write the supersymmetric
version of the Yukawa couplings of the SM. The Higgs field will also be part
of a chiral superfield in the 2 of SU(2)L, and it will be the lowest component.
The Yukawa couplings will directly descend from the superpotential. How-
ever, we immediately realize that in order to be able to write all the needed
couplings in a holomorphic way, we need two Higgs doublets, with opposite
U(1)Y charges:

W = λeijHLiẽj + λdijHQiD̃j + λuijH̃QiŨj,

with the charges given by

SU(3)× SU(2)L × U(1)Y
H (1,2,−1

2
)

H̃ (1,2,+1
2
)

(5.26)

In the SM we could use H∗ instead of H̃ but here using the anti-chiral
superfield H̄ is not allowed by SUSY.
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Of course, H and H̃ also have fermionic partners, the higgsinos. These
fermions have the same gauge charges of the superfields to which they be-
long, and so we see that we need a pair of charge-conjugate Higgs superfields
anyway otherwise both U(1)Y and SU(2)L would have anomalies at the quan-
tum level. (Indeed it can be proven that an SU(2) gauge theory with an odd
number of fermions in the 2 is not consistent at the quantum level.)

Within the Higgs sector, the only renormalizable coupling we can write
is

W ′ = µHH̃.

Note again that we can only write such a SUSY mass term for the Higgs if
we have two doublets.

There is also a quartic coupling involving the Higgs scalars in the MSSM
Lagrangian due to the d-terms, its coupling being therefore proportional to
the gauge couplings. However notice that, after solving for the f - and d-
terms, we have a Higgs potential given by

VH,H̃ ∝ |µ|
2
(
|H|2 + |H̃|2

)
+ g2

(
|H|2 − |H̃|2

)2

.

Thus H = 0 = H̃ is always a stable solution.
In order to break SU(2)L × U(1)Y to U(1)em one is forced to introduce

SUSY breaking terms that make the squared mass for H and H̃ negative.
Thus electroweak symmetry breaking and SUSY breaking are intimately re-
lated.

One last remark on the MSSM is that there are a lot of potentially danger-
ous terms that one could add to W , allowing processes violating baryon and
lepton numbers (and eventually leading to fast proton decay), for instance
terms such as D̃iQjLk, LiLj ẽk or D̃iD̃jŨk. These terms are avoided if we
assign R-charges to superfields in a way that SM particles all have vanishing
R-charge:

R(Q) = R(Ũ) = · · · = 1, R(H) = R(H̃) = 0,

so that for instance R(q) = 0 and the R-charge of the scalar Higgs which be-
comes the SM one is also zero. The continuous U(1)R is broken, for instance
by the µ-term, but a discrete Z2 subgroup survives, called R-parity, and it is
enough to prevent the dangerous terms in W to appear.
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Chapter 6

Radiative corrections and
non-renormalization theorems

In this chapter we finally address the question that was the main motivation
in considering supersymmetric field theories: the claim they have a “softer”
behavior under renormalization, i.e. there are cancellations among quantum
radiative corrections. This is crucial for instance to ensure the protection of
hierachies in the MSSM.

One way to proceed would be to take a SUSY action in component fields,
compute radiative corrections as in an ordinary field theory, and find that
upon summing different contributions, miraculous cancellations occur. Those
will clearly be due to the fact that we have identified several different cou-
plings, such as the quartic scalar φ4 couplings and φψψ Yukawas, or gauge
couplings and φψλ Yukawas.

Another way to proceed is to take profit of the manifestly SUSY formalism
of superspace and superfields. The idea here is to compute directly radiative
corrections to superfield propagators and vertices. The cancellations will be
automatic in this formalism. It is the latter route that we will employ.

6.1 Superfield propagators

For definiteness (and simplicity), we will consider only the theory of a chiral
superfield, i.e. the Wess-Zumino model.

In order to write the propagators of a theory, one has to consider only

113
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the part of the action that is quadratic in the (super)fields

S =

∫
d4x

(∫
d2θd2θ̄ Φ̄Φ + 1

2

∫
d2θ mΦ2 + 1

2

∫
d2θ̄ mΦ̄2

)
, (6.1)

where we have taken the mass to be real, m∗ = m for simplicity. Then, it
is a matter of taking the “inverse” of this quadratic kinetic term. All these
notions can be clearly summarized in the path integral approach to quantum
field theory, and we will review the relevant steps in the process of deriving
the superpropagators below.

We will derive the superpropagators in two different ways, in order to
foster confidence in the final results. Firstly, we will make use of the known
propagators of the component fields. Secondly, we will formulate the path
integral directly in terms of the superfields.

6.1.1 Formulation with component fields

The action (6.1) in components reads

S =

∫
d4x

(
∂µφ∂

µφ∗ − iψ̄σ̄µ∂µψ + ff ∗ +mφf +mφ∗f ∗ − 1
2
mψψ − 1

2
mψ̄ψ̄

)
.

(6.2)
It can be recast using matrices that summarize both the bosonic and the
fermionic kinetic terms

S =

∫
d4x

{
( φ∗ f )

(
−2 m
m 1

)(
φ
f ∗

)
(6.3)

+1
2
( ψ̄ ψ )

(
−iσ̄µ∂µ −m
−m −iσµ∂µ

)(
ψ
ψ̄

)}
.

Then, the various propagators are the entries in the inverse matrices of the
ones appearing in the expression above.

Let us recall that the Green function for a scalar (Klein-Gordon) field is
defined as

(−2x −m2)∆(x, x′) = iδ4(x− x′).

It is usually represented simply as

∆(x, x′) ≡ i

−2−m2
δ4(x− x′).
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Most notably (and possibly more familiar), its Fourier transform then reads

∆̃(p) =
i

p2 −m2
.

When more fields are present, with non-trivial kinetic matrices, the prescrip-
tion to compute propagators from the path integral is the following.

Given that the generating functional for Green functions is

Z[J, J∗] =

∫
[Dφ]ei

∫
(φKφ∗+Jφ+J∗φ∗), (6.4)

where we have written schematically S =
∫
φKφ∗, the Green functions are

evaluated as

〈0|φ(x)φ∗(x′)|0〉 =
1

Z

∫
[Dφ]φ(x)φ∗(x′)ei

∫
(φKφ∗+Jφ+J∗φ∗)

∣∣∣∣
J=J∗=0

=
1

Z

δ

δiJ(x)

δ

δiJ∗(x′)
Z

∣∣∣∣
J=J∗=0

. (6.5)

The propagators (or two-point functions) are thus easily obtained by just
performing the Gaussian integral (6.4)

Z[J, J∗] = N e−i
∫
JK−1J∗ (6.6)

(N is the normalization constant coming from the fluctuation determinant),
so that

〈0|φ(x)φ∗(x′)|0〉 = iK−1. (6.7)

We thus have to invert the kinetic matrices. For the bosonic one, we have

KB =

(
−2 m
m 1

)
⇒ K−1

B =
1

−2−m2

(
1 −m
−m −2

)
, (6.8)

while for the fermionic one we have

KF =

(
−iσ̄µ∂µ −m
−m −iσµ∂µ

)
⇒ K−1

F =
1

−2−m2

(
−iσµ∂µ m
m −iσ̄µ∂µ

)
.

(6.9)
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From the entries of the inverse matrices above we can read the two-point
functions, or propagators, of all the component fields. These are:

〈0|φ(x)φ∗(x′)|0〉 =
i

−2−m2
δ4(x− x′), (6.10)

〈0|φ(x)f(x′)|0〉 =
−im

−2−m2
δ4(x− x′), (6.11)

〈0|φ∗(x)f ∗(x′)|0〉 =
−im

−2−m2
δ4(x− x′), (6.12)

〈0|f(x)f ∗(x′)|0〉 =
−i2

−2−m2
δ4(x− x′), (6.13)

〈0|ψ̄α̇(x)ψα(x′)|0〉 =
σ̄µα̇α∂µ
−2−m2

δ4(x− x′), (6.14)

〈0|ψα(x)ψ̄α̇(x′)|0〉 =
σµαα̇∂µ
−2−m2

δ4(x− x′), (6.15)

〈0|ψα(x)ψβ(x′)|0〉 =
imδβα
−2−m2

δ4(x− x′), (6.16)

〈0|ψ̄α̇(x)ψ̄β̇(x′)|0〉 =
imδα̇

β̇

−2−m2
δ4(x− x′). (6.17)

Notice in passing that, since we are using Weyl fermions, we have several
different fermionic propagators. In particular, note that the chiral ones (the
last two) are actually vanishing for massless Weyl fermions.

Armed with the above two-point functions, we can now compute super-
field correlators, just by decomposing them:

〈0|Φ(y, θ)Φ(y′, θ′)|0〉 = 〈0|(φ(y) +
√

2θψ(y) + θ2f(y)) ·
·(φ(y′) +

√
2θ′ψ(y′) + θ′

2
f(y′))|0〉

= θ′
2〈0|φ(y)f(y′)|0〉+ θ2〈0|f(y)φ(y′)|0〉

+2θαθ′β〈0|ψα(y)ψβ(y′)|0〉

=
[
(θ′

2
+ θ2)(−im) + 2θθ′im

] 1

−2−m2
δ4(y − y′)

= −im(θ − θ′)2 1

−2−m2
δ4(y − y′). (6.18)

Now notice first of all that (θ − θ′)2 can be rewritten as δ2(θ − θ′). Indeed∫
d2θF (θ)(θ−θ′)2 =

∫
d2θ(a+θb+θ2c)(θ2−2θθ′+θ′

2
) = a+θ′b+θ′

2
c = F (θ′),
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which is the correct behavior for a Dirac delta-function (on G-odd variables).
A second point to be noticed in (6.18) is that the spacetime delta-function

has actually the chiral coordinates as argument. One way to obtain a more
familiar Dirac delta is to recall that the Taylor expansion can be recast simply
as the exponential of a derivative. For instance

F (y) = F (x+ iθσθ̄) = eiθσ
µθ̄∂µF (x).

Hence the propagator (6.18) can be rewritten as

〈0|Φ(x, θ, θ̄)Φ(x′, θ′, θ̄′)|0〉 = −imei(θσµθ̄−θ′σµθ̄′)∂µ 1

−2−m2
δ2(θ−θ′)δ4(x−x′).

(6.19)
There is however another, possibly more interesting, way to rewrite the

above propagator. Let us first notice the identity

D̄2(θ̄ − θ̄′)2 = −4.

Indeed D̄α̇ acts trivially on θ̄′. We can then perform the following chain of
identities

(θ − θ′)2F (y − y′) = −1

4
(θ − θ′)2[D̄2(θ̄ − θ̄′)2]F (y − y′)

= −1

4
D̄2[(θ − θ′)2(θ̄ − θ̄′)2F (y − y′)]

= −1

4
D̄2[(θ − θ′)2(θ̄ − θ̄′)2F (x− x′)].

In the second equality we have used that D̄θ = 0 = D̄y, while in the third
equality we have used that

y − y′ = x− x′ + iθσθ̄ − iθ′σθ̄′ = x− x′ + i(θ − θ′)σθ̄ + iθ′σ(θ̄ − θ̄′)

and the fact that (θ − θ′)3 = 0 = (θ̄ − θ̄′)3. Using the above, we can rewrite
(6.18) as

〈0|Φ(x, θ, θ̄)Φ(x′, θ′, θ̄′)|0〉 =
im

4
D̄2 1

−2−m2
δ2(θ − θ′)δ2(θ̄ − θ̄′)δ4(x− x′).

(6.20)
Writing it in this way, it is also obvious that it is a propagator for chiral
superfields, since acting with D̄ it necessarily gives a vanishing result because
D̄3 = 0.
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Similarly, we also get

〈0|Φ̄(x, θ, θ̄)Φ̄(x′, θ′, θ̄′)|0〉 =
im

4
D2 1

−2−m2
δ2(θ − θ′)δ2(θ̄ − θ̄′)δ4(x− x′).

(6.21)
We can now compute the remaining propagator

〈0|Φ(x, θ, θ̄)Φ̄(x′, θ′, θ̄′)|0〉 = 〈0|Φ(y, θ)Φ̄(ȳ′, θ̄′)|0〉
= 〈0|(φ(y) +

√
2θψ(y) + θ2f(y)) ·

·(φ∗(ȳ′) +
√

2θ̄′ψ̄(ȳ′) + θ̄′
2
f ∗(ȳ′))|0〉

=
[
1 + 2θαθ̄

′α̇(−iσµαα̇∂µ) + θ2θ̄′
2
(−2)

]
·

· i

−2−m2
δ4(y − ȳ′)

= e−2iθσµθ̄′∂µ
i

−2−m2
δ4(y − ȳ′) (6.22)

= ei(θσ
µθ̄+θ′σµθ̄′−2θσµθ̄′)∂µ

i

−2−m2
δ4(x− x′).

We can perform a similar trick to the one used for the chiral propagator. We
write

e−2iθσµθ̄′∂µF (y − ȳ′) = −1

4
[D̄2(θ̄ − θ̄′)2]e−2iθσµθ̄′∂µF (y − ȳ′)

= −1

4
D̄2
[
(θ̄ − θ̄′)2e−2iθσµθ̄′∂µF (y − ȳ′)

]
=

1

16
D̄2
[
(D′

2
(θ − θ′)2)(θ̄ − θ̄′)2e−2iθσµθ̄′∂µF (y − ȳ′)

]
=

1

16
D̄2D′

2
[
δ2(θ − θ′)δ2(θ̄ − θ̄′)e−2iθσµθ̄′∂µF (y − ȳ′)

]
=

1

16
D̄2D′

2 [
δ2(θ − θ′)δ2(θ̄ − θ̄′)F (x− x′)

]
,

where we have used that

e−2iθσµθ̄′∂µF (y − ȳ′) = F (x− x′ + iθσθ̄ + iθ′σθ̄′ − 2iθσθ̄′)

= F (x− x′ + iθσ(θ̄ − θ̄′)− i(θ − θ′)σθ̄′).

Eventually, the propagator (6.22) becomes

〈0|Φ(x, θ, θ̄)Φ̄(x′, θ′, θ̄′)|0〉 =
1

16
D̄2D′

2 i

−2−m2
δ2(θ− θ′)δ2(θ̄− θ̄′)δ4(x− x′).

(6.23)
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Again, one can read directly from the propagator that the superfield in x is
chiral while the superfield in x′ is anti-chiral.

Thus, we have obtained in (6.20), (6.21) and (6.23) all the propagators
for the theory of a chiral superfield. We now turn to derive the same prop-
agators in a formulation where even the path integral is expressed in terms
of superfields.

6.1.2 Formulation with superfields

It is instructive to rederive the above propagators directly from the action
written in superspace. However attention must be paid to the fact that parts
of the action are integrated over just half of superspace.

We thus now write the action for a chiral superfield, coupled to sources
J and J̄ which are respectively chiral and anti-chiral superfields themselves:

D̄α̇J = 0, DαJ̄ = 0.

The action is

S =

∫
d4x

[∫
d2θd2θ̄ Φ̄Φ +

∫
d2θ(1

2
mΦ2 + JΦ) +

∫
d2θ̄(1

2
mΦ̄2 + J̄Φ̄)

]
.

(6.24)
In order to convert it to an expression involving only integration over all of
superspace, we take profit of the following identity:

D̄2D2Φ = εαβεα̇β̇D̄α̇D̄β̇DβDαΦ

= εαβεα̇β̇(−D̄α̇DβD̄β̇DαΦ + 2iσµ
ββ̇
D̄α̇Dα∂µΦ)

= εαβεα̇β̇(−2iD̄α̇Dβσ
µ

αβ̇
∂µΦ− 4σµ

ββ̇
σναα̇∂µ∂νΦ)

= εαβεα̇β̇(4σµ
αβ̇
σνβα̇ − 4σµ

ββ̇
σναα̇)∂µ∂νΦ

= −8(σµσ̄ν)α
α∂µ∂νΦ

= −162Φ.

We can thus write, allowing for a (temporarily) non-local expression

Φ = − 1

16
D̄2D2 1

2
Φ.
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Now we can use the familiar substitution D̄2 = −4
∫
d2θ̄ to eventually write

S =

∫
d4xd2θd2θ̄

[
Φ̄Φ +

1

8
mΦ

D2

2
Φ +

1

8
mΦ̄

D̄2

2
Φ̄ +

1

4
Φ
D2

2
J +

1

4
Φ̄
D̄2

2
J̄

]
.

(6.25)
Using matrices, this is

S =

∫
d4xd2θd2θ̄

[
1

2
( Φ Φ̄ )

(
mD2

42
1

1 mD̄2

42

)(
Φ
Φ̄

)
+ ( Φ Φ̄ )

(
D2

42
J

D̄2

42
J̄

)]
.

(6.26)
The kinetic matrix and its inverse are thus

K =

(
mD2

42
1

1 mD̄2

42

)
⇒ K−1 =

2

−2−m2

(
mD̄2

42
−1

−1 mD2

42

)
. (6.27)

We have used for instance that m2D2D̄2

1622 = −m2

2
on anti-chiral superfields.

Hence, if we define

eiW (J,J̄) =

∫
[DΦ]eiS(Φ,Φ̄,J,J̄),

we obtain by performing the Gaussian integration

W = −
∫
d4xd2θd2θ̄

1

2

(
D2

42
J D̄2

42
J̄
) 2

−2−m2

(
mD̄2

42
−1

−1 mD2

42

)(
D2

42
J

D̄2

42
J̄

)
= −

∫
d4xd2θd2θ̄

1

2

(
D2

42
J D̄2

42
J̄
) 1

−2−m2

(
−mJ − 1

4
D̄2J̄

−1
4
D2J −mJ̄

)
=

∫
d4xd2θd2θ̄

(
−J 1

−2−m2
J̄ +

1

2
mJ

1

−2−m2

D2

42
J

+
1

2
mJ̄

1

−2−m2

D̄2

42
J̄

)
. (6.28)

=

∫
d4x

[∫
d2θd2θ̄

(
−J 1

−2−m2
J̄

)
+

∫
d2θ

1

2
mJ

1

−2−m2
J +

∫
d2θ̄

1

2
mJ̄

1

−2−m2
J̄

]
. (6.29)

We can find the correlation functions for the superfields by taking func-
tional derivatives of iW with respect to iJ and iJ̄ . However note that there
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is a slight subtlety in taking a functional derivative of a chiral superfield. A
good definition is

δ

δΦ(y′, θ′)
Φ(y, θ) = δ2(θ− θ′)δ4(y− y′) = −1

4
D̄2δ2(θ− θ′)δ2(θ̄− θ̄′)δ4(x− x′).

(6.30)
Indeed, applying this rule, we have

δ

δJ ′

∫
d4xd2θ ΦJ = −1

4

∫
d4xd2θ Φ(y, θ)D̄2δ2(θ − θ′)δ2(θ̄ − θ̄′)δ4(x− x′)

=

∫
d4xd2θd2θ̄ Φ(y, θ)δ2(θ − θ′)δ2(θ̄ − θ̄′)δ4(x− x′)

= Φ(y′, θ′).

Using the shorthand Φ′ ≡ Φ(y′, θ′), we then compute the propagators. The
chiral propagator is

〈0|ΦΦ′|0〉 =
δ

δiJ

δ

δiJ ′
eiW

= −i δ
δiJ

m
1

−2−m2
iJ ′

=
im

4

1

−2−m2
D̄2δ2(θ − θ′)δ2(θ̄ − θ̄′)δ4(x− x′),

exactly reproducing (6.20). As for the chiral-to-anti-chiral propagator, we
get

〈0|ΦΦ̄′|0〉 =
δ

δiJ

δ

δiJ̄ ′
eiW

= i
δ

δiJ

(
1

−2−m2
(−1

4
D′

2
)iJ ′
)

=
i

16

1

−2−m2
D̄2D′

2
δ2(θ − θ′)δ2(θ̄ − θ̄′)δ4(x− x′),

again in exact agreement with (6.23).
Before going on to compute the radiative corrections, let us perform the

Fourier transform on the spacetime coordinates. (Note that we will not
attempt here to also perform a Fourier transform in the G-odd coordinates,
though in some instances this could be of interest.)
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In momentum space, the propagators read:

〈0|Φ(p, θ, θ̄)Φ(−p, θ′, θ̄′)|0〉 =
im

4

1

p2 −m2
D̄2δ2(θ − θ′)δ2(θ̄ − θ̄′), (6.31)

〈0|Φ(p, θ, θ̄)Φ̄(−p, θ′, θ̄′)|0〉 =
i

16

1

p2 −m2
D̄2D′

2
δ2(θ − θ′)δ2(θ̄ − θ̄′), (6.32)

where now of course in D and D̄ we have replaced ∂µ by ipµ.

6.2 Some radiative corrections

We are now able to compute quantum radiative corrections, which appear
as Feynman diagrams including loops. Before establishing a theorem that
will constrain such corrections, we will consider radiative corrections to some
selected quantities to get a feeling of how supersymmetry and superspace
techniques facilitate such computations.

Let us first compute the corrections to the propagators themselves.
A diagram with a loop inserted inside a 〈ΦΦ〉 propagator involves two

cubic vertices of the type ∫
d4xd2θ

λ

3
Φ3(y, θ). (6.33)

Note that both vertices should be chiral, in order to tie correctly with the
chiral superfields at the two ends of the (corrected) propagator.

As usual in perturbative quantum field theory, for instance from the path
integral formulation, one has to bring down the vertices in the correlation
function, and integrate over the momentum running in the loop. Going to
the Fourier transform, we obtain for the corrected propagator

1

2

∫
d4xeip(x−x

′)〈0|Φ(x, θ, θ̄)Φ(x′, θ′, θ̄′)i

∫
d4x1d

2θ1
λ

3
Φ3(x1, θ1, θ̄1)·

·i
∫
d4x2d

2θ2
λ

3
Φ3(x2, θ2, θ̄2)|0〉 =

= −2λ2

∫
d4kd2θ1d

2θ2
im

4

1

p2 −m2
D̄2δ2(θ−θ1)δ2(θ̄−θ̄1)·

·im
4

1

k2 −m2
D̄2

1δ
2(θ1−θ2)δ2(θ̄1−θ̄2)

im

4

1

(p− k)2 −m2
D̄2

1δ
2(θ1−θ2)δ2(θ̄1−θ̄2)·
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·im
4

1

p2 −m2
D̄′

2
δ2(θ2 − θ′)δ2(θ̄2 − θ̄′).

We can concentrate on the central part (which actually corresponds to the
amputated diagram, i.e. all that we need to compute the corrections). Recall
that δ2(θ1 − θ2) remains as a factor in the internal propagators, and in the
expression above it will appear twice. Hence, since (θ1 − θ2)4 = 0 because
of the G-odd nature of the superspace coordinates, the whole expression
vanishes and there are no corrections to the 〈ΦΦ〉 propagator.

This result amounts to stating that the mass parameter appearing in the
superpotential is not renormalized. As we have just seen, this is automatic
in superfield language. In components, the same result would be seen as a
cancellation between two types of one-loop corrections to the scalar prop-
agator: a seagull diagram with a scalar loop and a quartic vertex, against
a diagram with a fermionic loop and two Yukawa vertices. The cancella-
tion occurs because of the relation between the couplings of the two kinds of
vertices.

A completely similar vanishing result is obtained for the one-loop correc-
tion to the 〈Φ̄Φ̄〉 propagator.

On the other hand, the 〈ΦΦ̄〉 propagator is a different story. Let us
consider a one-loop diagram similar to the one considered previously for the
〈ΦΦ〉 propagator, however now one vertex is chiral while the other is anti-
chiral. As a consequence, the internal propagators are also of 〈ΦΦ̄〉 type.
Let us compute the correction, focusing on the amputated diagram where we
have dropped the two external propagators. After bringing down the vertices
and going to Fourier space, we obtain a contribution proportional to

2λλ∗
∫
d4kd2θ1d

2θ̄2
i

16

1

k2 −m2
D̄2

1D
2
2δ12

i

16

1

(p− k)2 −m2
D̄2

1D
2
2δ12 =

= −2λλ∗
∫
d4kd2θ1d

2θ̄2
1

k2 −m2

1

(p− k)2 −m2
e−(θ1σµθ̄1+θ2σµθ̄2−2θ1σµθ̄2)pµ ,

where in the first line we have used the shorthand δ12 = δ2(θ1−θ2)δ2(θ̄1− θ̄2)
and in the second line we have used the expression appearing in (6.22). It
is easy to convince oneself that the above expression will contain a non-
vanishing, logarithmically divergent term proportional to p2 (for instance, by
bringing down twice the last term in the exponential). This divergence will
be compensated by a counterterm which contributes to the wave function
renormalization of the superfield Φ. Indeed, it was expected that such wave
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function renormalization would take place. In components, we would expect
indeed from, e.g., the action for the scalar multiplet (3.15) non trivial wave
function renormalization Zφ and Zψ. What supersymmetry tells us is that
there is a single function (of the couplings) that renormalizes all the fields
Zφ = Zψ 6= 1.

Let us consider other graphs that yield vanshing contributions. For in-
stance, take a “tadpole” graph with only one external Φ line, and a loop
attached to it. The only vertex is chiral, and the internal line in the loop is
necessarily of 〈ΦΦ〉 type. However it is a two-point function evaluated at the
same point, in particular at θ = θ′, θ̄ = θ̄′. Since δ2(θ − θ) = (θ − θ)2 = 0,
the internal propagator is

〈0|Φ(p, θ, θ̄)Φ(−p, θ, θ̄)|0〉 = 0,

it vanishes identically, and so does any tadpole diagram.
Next, we can consider the (one particle irreducible) one-loop correction

to the cubic vertex. Since all external lines are chiral, all three vertices are
also chiral, and then all internal propagators are 〈ΦΦ〉 too. The correction
to the amputated graph is proportional to

4λ3

∫
d4kd2θ1d

2θ2d
2θ3

(
im

4

)3
1

k2 −m2

1

(p− k)2 −m2

1

(k − q)2 −m2
·

·D̄2
1δ12D̄

2
1δ13D̄

2
2δ23.

It is now a simple matter to see that

D̄2
1δ12D̄

2
1δ13D̄

2
2δ23 ∝ (θ1 − θ2)2(θ1 − θ3)2(θ2 − θ3)2 = (θ1 − θ2)4(θ2 − θ3)2 = 0.

This means that there are no radiative corrections to the Φ3 vertex. It
implies that there is no renormalization (at least at one-loop) of the coupling
constant λ. In other words we have that Zλ = 1, in the same way as we
also had Zm = 1. Of course the wave function renormalization affects the
normalization of the vertices and of the physical mass, but supersymmetry
imposes that there is no extra “intrinsic” renormalization of the couplings
appearing in the superpotential.

As a last example, we consider quantum loop corrections to the vacuum
energy (which of course is vanishing classically). At one loop they all vanish
for the same reason as tadpoles (they involve a two-point function evaluated
at the same point). At two-loop level we have one potentially non-trivial
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diagram, with two vertices, one chiral and one anti-chiral, and three 〈ΦΦ̄〉
propagators between them. We now integrate over two different loop mo-
menta. The contribution is proportional to

4λλ∗
∫
d4pd4kd2θ1d

2θ̄2

(
i

16

)3
1

p2 −m2

1

k2 −m2

1

(p+ k)2 −m2
·

·D̄2
pD

2
pδ12D̄

2
kD

2
kδ12D̄

2
−p−kD

2
−p−kδ12 =

= 4λλ∗
(
i

16

)3 ∫
d4pd4kd2θ1d

2θ̄2
1

p2 −m2

1

k2 −m2

1

(p+ k)2 −m2
·

·e−(θ1σµθ̄1+θ2σµθ̄2−2θ1σµθ̄2)(pµ+kµ−pµ−kµ) =

= 4λλ∗
(
i

16

)3 ∫
d4pd4k

1

p2 −m2

1

k2 −m2

1

(p+ k)2 −m2

∫
d2θ1d

2θ̄2 1 = 0.

Thus we see that the vacuum energy is still zero at two-loops. This is reassur-
ing since a non-zero vacuum energy would mean that supersymmetry itself is
broken by perturbative quantum corrections. Let us now try to systematize
these results, also to see if supersymmetry is powerful enough to prevent
corrections to some quantities at all orders in the perturbative expansion.

6.3 General results on renormalization

In order to derive systematic results on the renormalization of SUSY the-
ories, we need to develop some more formalism, eventually leading to (su-
per)Feynman rules that will help in considering generic diagrams contributing
to radiative corrections.

Let us first recall the theoretical framework in which Feynman rules are
usually derived. The trick is to define correlators in the interacting the-
ory in terms of correlators of the free theory, as follows (below, we will be
schematical and call φ a representative field):

〈φφ . . . 〉int =

∫
[Dφ](φφ . . . )eiS0+iSint(φ)

=

∫
[Dφ](φφ . . . eiSint(φ))eiS0

= 〈φφ . . . eiSint(φ)〉free,
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where S0 is the (quadratic) action of the free theory.

We now recall that in the free theory, where we define

eiW0(J) =

∫
[Dφ]eiS0(φ,J),

the correlation functions are evaluated as

〈φ . . . 〉free =

∫
[Dφ](φ . . . )eiS0(φ)

=

(
δ

δiJ
. . .

)∫
[Dφ]eiS0(φ,J)

=

(
δ

δiJ
. . .

)
eiW0(J).

Then, we can define the functional W (the generating function for the con-
nected Green functions) for the interacting theory as

eiWint(J) =

∫
[Dφ]eiS0(φ,J)+iSint(φ) =

∫
[Dφ]eiSint(φ)eiS0(φ,J)

= 〈eiSint(φ)〉free = eiSint(
δ
δiJ

)eiW0(J).

The effective action Γ(φcl), i.e. the generating function of the amputated one
particle irreducible Green functions, is then obtained by taking the Legendre
transform of Wint(J), where we substitute φcl = δW

δJ
.

In practice, we will compute the correction to a free correlator at nth
order in the couplings by evaluating

〈φ . . . (iSint(φ))n〉free =

(
δ

δiJ
. . .

)(
iSint(

δ

δiJ
)

)n
eiW0(J). (6.34)

When computing contributions to the effective action Γ(φcl), we must insert
classical fields φcl where the amputated external propagators used to be in
the expression above, and then integrate over the position of such insertions
(or, in Fourier space, integrate over the external momenta).

Having summarized the general framework for perturbative computations
in quantum field theories, we now apply it to our SUSY field theories.
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6.3.1 Super-Feyman rules

In order to derive Feynman rules for the SUSY field theory of the Wess-
Zumino model, we need to see how does the cubic vertex (6.33) enter in the
loop graphs.

In particular, referring to (6.34), we will need to evaluate

iSint(
δ

δiJ
)iJ1iJ2iJ3 = 2i

∫
d4xd2θ4 λ

(
−D̄

2
1

4

)
δ14

(
−D̄

2
2

4

)
δ24

(
−D̄

2
3

4

)
δ34

= 2i

∫
d4xd2θ4d

2θ̄4 λ

(
−D̄

2
1

4

)
δ14

(
−D̄

2
2

4

)
δ24δ34.

We have labeled the fields by their spacetime point, we remind that δ12 is
a Grassmann Dirac function on all superspace coordinates, and in the last
equality we have traded a D̄2 for an integral

∫
d2θ̄.

When computing amputated corrections, we should make sure that we
drop a complete propagator for every external line. Such a propagator always
has a D̄2δ corresponding to it. (Eventually, we must replace each external
propagator with a classical superfield.) Then, we learn that the D̄2 that we
have eliminated in the expression above has to be the one corresponding to
an internal line. As a consequence, the rule must be that for every vertex
there is a D̄2 acting on all but one of the internal lines.

For stating the Feynman rules, it is thus more convenient to associate
the action of D̄2 (or D2 for anti-chiral vertices) to the vertices themselves
rather than to (internal) propagators. We use then the Grisaru-Rocek-Siegel
propagators, which are the ones appearing “naked” in W0(J), see (6.28):

〈Φ1Φ2〉GRS =
im

p2 −m2

D̄2
1

4p2
δ12, (6.35)

〈Φ1Φ̄2〉GRS =
i

p2 −m2
δ12. (6.36)

Then, in order to compute terms in the effective action:

• For every chiral vertex we associate a factor of 2iλ and a − D̄2

4
acting

on all but one internal (GRS) propagators attached to the vertex.

• For an anti-chiral vertex, we associate a 2iλ∗ and distribute −D2

4
on all

but one internal propagators attached to it.
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• For both kind of vertices, we integrate over all of superspace
∫
d2θd2θ̄.

• We multiply chiral or antichiral superfields where every external line
used to be, and integrate over the external momenta.

• Finally, we integrate over all loop momenta, and take care of the com-
binatorial factors.

(As usual, it is very important to remind oneself of the path integral from
which the Feynman rules were derived in order to get all factors and signs
right in any specific correlator...)

Let us stress that the important point in the Feynman rules above is
really that we integrate over all of superspace at every vertex. The reason is
that this will allow us to integrate by parts any SUSY covariant derivative
at any vertex, thus making it possible to shift the action of D̄2 and/or D2

from one propagator to another.

6.3.2 Non-renormalization theorem

With this Feynman rules, we can now prove a general theorem on renor-
malization. Given the rules above, any contribution to the effective action
(we are considering amputated one particle irreducible graphs) will take the
following form.

There will be
∫
d2θd2θ̄ integrations at every vertex, and all propagators

have a (D̄2)k(D2)lδ12 or a (D2)k(D̄2)lδ12 factor, where both k and l are either
0 or 1.

The fact that we have written the vertices with a
∫
d2θd2θ̄ integration

allows us, as advertised previously, to perform integrations by parts and
move the D2 and D̄2 from one propagator to another (of course, distributing
them according to the Leibniz rule).

Suppose now that we choose one specific loop in the graph. By (Grass-
mann) partial integrations on every successive vertex along the loop, we can
remove all the D2 and D̄2 to only one of the propagators composing the loop,
let us say for definiteness the one between the first two vertices. Noting that
we can lower the number of SUSY-covariant derivatives by using expressions
such as D2D̄2D2 ∝ 2D2, we will eventually arrive at an expression like∫
d4θ1d

4θ2 . . . d
4θn δ23δ34 . . . δn1(D2)k(D̄2)lδ12 =

∫
d4θ1d

4θ2 δ12(D2)k(D̄2)lδ12.
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Such an expression is non vanishing if and only if k = l = 1. Indeed, if either
k or l is larger than 1 then e.g. D4 = 0, while if either k = 0 or l = 0 we will
have e.g. (θ1 − θ2)4 = 0.

Thus in the only case where we have a non-vanishing result, the contri-
bution will read∫

d4θ1d
4θ2 δ12D

2D̄2δ12 =

∫
d4θ1d

4θ2 δ12(. . . ) =

∫
d4θ1 (. . . ).

The end result of this procedure has been to effectively contract the loop to
one of its vertices. Importantly, attached to this last vertex we still have a
full superspace integral

∫
d4θ1 ≡

∫
d2θ1d

2θ̄1. The integrand is a function of
the momenta, both loop and external (which will generically enter at every
vertex, and appear in the denominator of the propagators), of θ1 and θ̄1, and
of all the other Grassmann variables associated to the other vertices.

We can then repeat the same argument on another remaining loop of
the effective graph obtained in the previous step. The procedure will go on
exactly as before. Eventually, if the graph does not vanish, we will end up
necessarily with a contribution given by an expression like∫

d2θd2θ̄

∫
d4p1 . . . d

4pkd
4k1 . . . d

4kn F̃1(p1, θ, θ̄) . . . F̃k(pk, θ, θ̄)·

·G̃(p1, . . . , pk; k1, . . . , kn),

where the graph had originally n loops with their associated momenta ki,
while the functions F̃i are generic (Fourier transforms of) superfields de-
pending on each external momentum pl. The function G̃ encodes all the
remaining momentum dependence coming from the (bosonic) denominators
of the propagators.

Going back to x-space, we see that the typical contribution to the effective
action will be∫

d4x1 . . . d
4xk

∫
d2θd2θ̄ F1(x1, θ, θ̄) . . . Fk(xk, θ, θ̄)G(x1, . . . , xk).

This expression can of course be non-local in space-time, but (oddly enough)
it is local in the G-odd variables, and it is necessarily integrated over all of
superspace. Hence the effective action contains corrections to the d-terms,
but not to the f -terms. This is why there is wave-function renormalization

Γ ∝ δΦ

∫
d4xd2θd2θ̄ ΦΦ̄,
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but no renormalization of m and λ, which would imply terms like

δm

∫
d4xd2θ Φ2 and δλ

∫
d4xd2θ Φ3.

Also, the vacuum energy cannot receive corrections, since that would imply
a contribution to Γ with no external superfields, that is with all Fi = 1, but
then the Grassmann integral gives trivially zero. The vacuum energy then
stays zero at any order in perturbation theory.

This latter result is of course very important, it means that supersymme-
try cannot be broken by perturbative quantum effects. As we will see in the
next chapter, the only option to break supersymmetry spontaneously will be
either at tree level, or due to non-perturbative effects.

It is a simple exercise to revisit the previous examples of radiative cor-
rections using the Feynman rules of the present section.

The one-loop correction to the term with two external chiral superfields Φ
in the effective action will be computed by writing the same diagram, putting
a D2 on both internal 〈ΦΦ〉 lines, and also a D̄2 on each line from both ver-
tices. Integrating by parts, we end up (being careful to which Grassmann
coordinates the supercovariant derivatives act upon) with an expression con-
taining

∫
d2θd2θ̄Φ(x, θ)2 which gives just a boundary term in the effective

action. An exactly similar argument can be given for all one-loop diagrams
with only chiral external legs, thus proving that there are no corrections to
the superpotential in the quantum effective action.

Instead, the one-loop correction to the term with Φ and Φ̄ external legs
can be evaluated by putting a D̄2 on one line from the chiral vertex, and
a D2 on the same line (or the other, and then integrating by parts) from
the anti-chiral vertex. Here we end up with a contribution to the effective
action proportional to

∫
d2θd2θ̄Φ(x, θ)Φ̄(x, θ̄), which is just the familiar wave-

function renormalization.
Finally, the two loop vacuum energy diagram is evaluated by distributing

a D̄2 and a D2 on two of the three lines. Then one of the two loops can
be eliminated, leaving a one-loop vacuum diagram with a propagator with
D̄2D2 acting on it. This leads to

∫
d2θd2θ̄1 = 0 as before.

More details and other examples can be found in M. T. Grisaru, W. Siegel
and M. Rocek, “Improved Methods For Supergraphs,” Nucl. Phys. B 159
(1979) 429, and in chapter 6 of the book/review S. J. Gates, M. T. Grisaru,
M. Rocek and W. Siegel, “Superspace, or one thousand and one lessons in
supersymmetry,” Front. Phys. 58 (1983) 1 [arXiv:hep-th/0108200].
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6.4 Renormalization of the real superfield

All the above discussion and theorems concerned the theory of a single chiral
superfield. The generalization to a theory with many different chiral super-
fields is obvious and straightforward. However extending the formalism to
real (vector) superfields is more complicated, and we will not review it here.

Let us only remark the following. Corrections to the quantum effective
action must be written as manifestly SUSY and gauge invariant terms. Hence
any term δL will have to be either a d-term or an f -term. In particular,
the renormalization of the gauge coupling is related to the wave-function
renormalization of the fields in V . This is not a real surprise as this is
already the case in non-supersymmetric gauge theories after all.

To see this in more detail, couple first V to matter fields Φ in some
representation. Then the d-term∫

d2θd2θ̄ Φ̄e2gV Φ

gets corrections, which however must be of the same form as the kinetic term
itself, so that

Leff ∝ ZΦ

∫
d2θd2θ̄ Φ̄e2gV Φ,

where ZΦ = 1 + δΦ and δΦ is really the coefficient extracted from the loop
computation.

It is important to note that we cannot have a generic

Leff ∝ ZΦ

∫
d2θd2θ̄ Φ̄e2ZggZ

1/2
V V Φ,

because that would mean that we would have generated from loop diagrams
a correction term like

δL ∝
∫
d2θd2θ̄ Φ̄e2gV V Φ,

which is not gauge invariant.
In other words, since we can rescale g into V , we really need to have only

one independent renormalization function, which we will choose to be ZV .
This is purely a consequence of gauge symmetry, and not of supersymmetry.
Supersymmetry just tells us that the gaugino undergoes the same wave-
function renormalization as the gauge field.
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A similar argument, which applies also to pure (non-abelian) gauge the-
ories is as follows. The gaugino superfield Wα will be renormalized by the
same function as the real superfield V . This implies that the non-abelian
field strength will be renormalized as

Fµν → Z
1/2
V Fµν .

Now, Fµν contains a quadratic term g[Aµ, Aν ] which has to be renormalized
in the same way as the term linear in Aµ, otherwise, again, that would mean
non-gauge invariant corrections in the effective action. We thus obtain again
that

ZgZ
1/2
V = 1.

Note that ZV 6= 1 means that there are corrections

δL ∝ δV

∫
d2θ trWαWα + c.c.

This seems to contradict the theorem that the terms generated in the effective
action should all be of the form

∫
d2θd2θ̄ (to be honest, we proved the theorem

only in the presence of chiral superfields but it is indeed true also when real
superfields are present).

However recall that

trWαWα ∝ D̄2trWαe−VDαe
V ,

and thus we can rewrite

δL ∝ δV

∫
d2θd2θ̄ trWαe−VDαe

V + c.c.

which gives a SUSY and gauge invariant term in the effective action (after
integrating over spacetime). The truth is that, as we had already noticed,
the gauge kinetic term is only a “fake” f -term since it can be rewritten as a
perfectly fine local d-term.

Hence, Zg 6= 1 and the gauge coupling in SUSY gauge theories indeed
runs. This is a welcome feature, and it was expected since, for instance,
in SU(N) super-Yang-Mills theory it is quite easy to compute the one-loop
beta function in component fields (it is just like QCD with one adjoint Weyl
fermion), finding

β(g) ≡ dg

d log µ
= − 3N

16π2
g3.
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For completeness, we list here the beta function for SU(Nc) SQCD with
Nf flavors. Extracting it from known computations involving the component
fields is also quite straightforward, though one needs to know the contribution
to the beta function of QCD from charged scalars. [This information can
be retreived e.g. in chapter 16 of M. E. Peskin and D. V. Schroeder, “An
Introduction To Quantum Field Theory,” Addison-Wesley (1995).] The one-
loop result is

β(g) = − 1

16π2
(3Nc −Nf )g

3. (6.37)

We see that there is a large range of values of Nf such that the theory is
asymptotically free (β < 0).

6.5 Holomorphy and non-renormalization

As a last comment on renormalization properties of SUSY field theories,
let us argue for the non-renormalization of the superpotential W (Φ) in a
completely different way. This approach is mainly due to Seiberg.

Let us consider again a Wess-Zumino model of one chiral superfield Φ
with

W (Φ) =
1

2
mΦ2 +

1

3
λΦ3. (6.38)

Recall that we have symmetries acting on the fields. Here we have essentially
two U(1)s: one rotating each physical component of Φ. At the level of the
superfield, we have an R-symmetry and an axial-like symmetry:

U(1)R : φ→ φ, ψ → e−iαψ (θ → eiαθ)

U(1)Φ : φ→ eiαφ, ψ → eiαψ.

The superpotential breaks explicitly both of these symmetries.
Let us now remark that also the coupling constants m and λ enter holo-

morphically in the superpotential W . We could thus promote them to back-
ground (moduli) chiral superfields, so that the physical couplings are actually
the vacuum expectation values of these fields whose dynamics is frozen by
some other means (e.g., their kinetic term is suppressed). Now, it becomes
possible to assign charges under the global symmetries to these superfields
so that the superpotential is invariant, i.e. it should have R-charge 2 and
Φ charge 0. If we keep calling the background superfields by the constants
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they are related to, the transformation laws that we need to impose are the
following:

U(1)R : m→ e2iαm, λ→ e2iαλ

U(1)Φ : m→ e−2iαm, λ→ e−3iαλ.

Now since W (Φ,m, λ) preserves both U(1)s (which are not anomalous since
there are no gauge symmetries around), then the effective superpotential Weff

(that is, the part of the effective action that cannot be written as a d-term)
must also preserve them, and because supersymmetry is also preserved Weff

must be a holomorphic function of Φ, m and λ.
These requirements imply that

Weff =
1

2
mΦ2f

(
λΦ

m

)
, (6.39)

where λΦ
m

is the only chargeless holomorphic combination of the superfields,
and f(z) is a holomorphic function.

Once we assume that the background superfields have frozen to their
VEVs, we can now analyze various limits in order to constrain the form of
f(z). When λ = 0 the theory is free, and we should find no corrections to
the classical action. Hence

Weff(λ = 0) = Wtree(λ = 0) =
1

2
mΦ2.

This implies that f(0) = 1.
If we Taylor expand f so that

f(z) = 1 + a1z + a2z
2 + . . . ,

with ai some numerical coefficients, we get for the effective superpotential

Weff =
1

2
mΦ2 +

1

2
a1λΦ3 +

1

2
a2
λ2

m
Φ4 +O

(
λ3

m2

)
. (6.40)

We can then scale both λ and m to zero in such a way that m ∝ λ2 → 0.
The first two terms scale to zero, while the third is constant and the higher
order ones diverge. This is clearly impossible for a theory with Wtree → 0.
Hence we understand that a2 = a3 = · · · = 0 and f = 1 + a1t.
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Another way to see this is the following. The coefficient an multiplies
a term like λn

mn−1 Φn+2. Such a term must arise from a graph with n chiral
vertices and n+ 2 external lines. It is easy to see that only tree-level graphs
can accomodate that, and they are not one-particle irreducible. Hence they
cannot contribute to the effective action and such corrections cannot arise,
i.e. all their coefficient must vanish.

Finally, the O(λ) term in Weff cannot be anything else than the vertex in
Wtree. Thus, we have proven that

Weff = Wtree.

This is entirely equivalent to the perturbative non-renormalization theorem
of the superpotential Wtree.

Actually, in the present context we can even extend this result to non-
perturbative effects. If their contribution is to be holomorphic in λ, then such
terms will be proportional to, say, e−1/λ. However if λ approaches 0 from the
negative real axis, the non-perturbative contribution would explode, which
makes no sense for a vanishingly small coupling. Hence holomorphy rules
out also non-perturbative corrections to the effective superpotential, at least
in theories of chiral superfields only.

Let us mention as a last remark that when (asymptotically free) gauge
theories are also in the game, there is a class of non-perturbative corrections
that are possible, and indeed can be shown to arise in many cases. The
reason is that because of dimensional transmutation, one can trade the run-
ning gauge coupling g for a holomorphic scale which is defined in terms the
complexified coupling τ given in (4.55) by

Λ = µe
− 8π2

b0
τ(µ)

= µe
− 8π2

b0g
2(µ)

+i Θ
b0 . (6.41)

It is this Λ that can be considered as a background chiral superfield as in the
argument above, and thus holomorphy does not prevent it from entering in
the effective superpotential Weff . Furthermore, Λ goes to zero when the gauge
coupling is sent to zero. The perturbative non-renormalization theorem is not
contradicted because corrections proportional to some (necessarily positive)
power of Λ are of course non-perturbative in the gauge coupling g.
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Chapter 7

Supersymmetry breaking

Supersymmetry breaking is an issue that must be addressed since in the real
world supersymmetry is broken. Indeed, there is no degeneracy between
boson and fermion masses. More precisely, since we established that the
minimally supersymmetric version of the Standard Model is the MSSM, it is
then an experimental fact that the masses of all the superpartners are not
lighter than the Electro-weak scale, otherwise they would have been already
observed in the previous generation of accelerators.

Yet, for supersymmetry to be really helpful in curing the hierarchy prob-
lem, it must be restored at some intermediate scale between MEW ∼ 100
GeV and MGUT ∼ 1016 GeV. Usually, it is expected that SUSY is restored
close to MEW , so as to maintain (and possibly explain) the hierarchy between
MEW and MGUT .

How do we cook up then a theory which is supersymmetric at high en-
ergies but is not supersymmetric at lower energies? Supersymmetry will be
broken by some dimensionful quantity MSUSY , so that for E > MSUSY the
theory behaves supersymmetrically, while for E < MSUSY it will not (e.g.,
there will be mass splittings among superpartners).

There are two ways in which we can introduce such a dimensionful break-
ing:

i) Spontaneous SUSY breaking: The theory as a whole preserves SUSY,
but its vacuum does not. Namely, there will be a field acquiring a VEV
〈ϕ〉 ∼MSUSY such that SUSY is broken.

ii) Explicit (soft) SUSY breaking: The Lagrangian of the theory contains
terms which do not preserve SUSY. However it is assumed that are

137
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present only those terms (dubbed soft) that preserve the high energy
behavior of SUSY (i.e. the UV cancellations). These soft terms always
correspond to dimensionful parameters.

We will actually see that it is possible to treat case ii) as a specific limit of
case i).

In the rest of this chapter we concentrate on spontaneous SUSY breaking,
which is also the most natural option, since in some sense it requires the
theory itself to predict that SUSY is broken.

7.1 Spontaneous SUSY breaking

We have seen at the very beginning, in Chapter 2, that the first consequence
of the SUSY algebra is that a SUSY ground state must have vanishing energy.
Indeed, to repeat the argument, the superalgebra

{Qα, Q̄α̇} = 2σµαα̇Pµ

implies that, for any state and thus also for a ground state |Ω〉

δαα̇〈Ω|{Qα, Q̄α̇}|Ω〉 =
∑
α

‖Qα|Ω〉‖2 +
∑
α̇

‖Q̄α̇|Ω〉‖2 ≥ 0

= 4E‖|Ω〉‖2,

so that E = 0 if and only if Qα|Ω〉 = 0 = Q̄α̇|Ω〉. What is most important
here, is that it is also true that as soon as E > 0, then we know that there
must exist an α or an α̇ such that Qα|Ω〉 6= 0 or Q̄α̇|Ω〉 6= 0. In other words,
the vacuum |Ω〉 is not SUSY invariant. Hence, SUSY is broken spontaneously.

This means that the vacuum energy E is an order parameter for broken
SUSY: whenever E > 0 SUSY is broken, while if E = 0 SUSY is preserved.
This observation is in line with the fact that spontaneous breaking of global
symmetries is always associated to an order parameter. Below, we turn to
the Lagrangian version of this consequence of broken SUSY.

7.1.1 Vacuum energy and f- and d-terms

We can restate the above observation in more detail and at the classical level
considering the most general SUSY theory with gauge fields and matter. The
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Lagrangian is

L =

∫
d2θd2θ̄

∑
r

Φ̄re
2gVaT

(r)
a Φr +

∫
d2θ W (Φr) +

∫
d2θ̄ W̄ (Φ̄r)

−τ
8

∫
d2θ trWαWα −

τ

8

∗
∫
d2θ̄ tr W̄α̇W̄ α̇.

The only contribution to the vacuum energy, at the classical level at least,
comes from the scalar potential:

V(φr, φ
∗
r) =

∑
r

(
∂W

∂φr

)
i

(
∂W̄

∂φ̄r

)i
+

1

2
g2
∑
a

(∑
r

φ∗riT
(r)
a

i

jφ
j
r

)2

≡
∑
r

f ∗rif
i
r +

1

2

∑
a

dada,

where we write derivatives with respect to the scalar fields, to denote the
fact that the expression is a function of them. We have V = 0, and thus
vanishing classical energy, if and only if fr = 0 and da = 0 for all values of r
and a.

Indeed, consider a vacuum state of such a theory. In order for the vacuum
to preserve Poincaré symmetry, the only fields which can acquire a VEV
must be Lorentz scalars. Moreover the VEV must be constant throughout
spacetime. Consider now the SUSY variations of the fermions in such a
vacuum. (The ones for the bosons are automatically vanishing since the
fermions are set to zero.) For the matter fields we have

δψir =
√

2εf ir,

while in the gauge sector we have

δλa = iεda.

Hence a vacuum configuration is SUSY invariant, i.e. the variations of all the
fields are zero, if and only if fr = 0 and da = 0, which as we have just seen
implies that the potential vanishes, V = 0.

We have thus demonstrated that V is an order parameter for SUSY break-
ing, playing at the classical level the role that E was playing at the quantum
level.
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7.1.2 The SUSY breaking vacuum and the goldstino

For a SUSY preserving vacuum, we can content ourselves with solving the
“first order” conditions f = 0 and d = 0. Since the potential is positive
semi-definite, V ≥ 0, if we find a state with V = 0 we are ensured that it is
a global minimum of V , in particular it is a stationary point.

For a vacuum which is not SUSY, there are no short-cuts and we must
find a stationary point of the potential V by computing its first derivative
and setting it to zero:

dV = 0 ⇔ ∂V
∂φir

= 0, ∀r, i. (7.1)

For simplicity, let us suppress from now on the index r of the representation,
we can just group together all the irreducible representations into a single
reducible one.

Then, given the potential

V =
∂W

∂φi
∂W̄

∂φ̄i
+

1

2
g2
∑
a

(
φ∗iTa

i
jφ

j
)2
,

we obtain for its first derivative

∂V
∂φi

=
∂2W

∂φi∂φj
∂W̄

∂φ̄j
+ g2

∑
a

(
φ∗jTa

j
kφ

k
)
φ∗l Ta

l
i

= − ∂2W

∂φi∂φj
f j − g

∑
a

φ∗l Ta
l
ida,

where we have used (5.12) and (5.13). We thus have the condition for an
extremum of the potential:

dV = 0 ⇔ ∂2W

∂φi∂φj
f j + gφ∗l Ta

l
ida = 0, (7.2)

where now it is intended that there is a sum also over the repeated a indices.
Of course, one should now check that the extremum that has been found

is really a minimum, at least a local one. For instance, one should compute
the mass matrix for the scalars around that minimum, and check that all the
eigenvalues m2 are positive. We will show an example of such a procedure
for an example in the following.
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By considering instead the mass matrix for the fermions, there is a nice
consequence of the existence of such an extremum that can be extracted from
the above expression for dV = 0.

Consider the mass matrix of the fermions of the theory, including the
Yukawa-like interactions where we suppose that the scalars are frozen at
their extremum value:

Lmass,fermions = ig
√

2φ∗iTa
i
jλaψ

j − 1

2

∂2W

∂φi∂φj
ψiψj + c.c. (7.3)

= −1

2
( ψi λa )

(
∂2W
∂φi∂φj

− ig√
2
φ∗l Tb

l
i

− ig√
2
φ∗kTa

k
j 0

)(
ψj

λb

)
+ c.c.

Before jumping to any conclusion, we need the following last bit of in-
formation. The superpotential is gauge invariant, which means that under a
gauge transformation

δαφ
i = αaTa

i
jφ

j

it should stay invariant, δαW = 0. This translates into

0 =
∂W

∂φi
δαφ

i = −f ∗i αaTaijφj,

so that invariance of W under any gauge transformation imposes a relation
between the f -terms:

φ∗iTa
i
jf

j = 0. (7.4)

This relation is always true, in particular for values of the scalar fields that
correspond to an extremum of the potential. Hence, summing together the
conditions (7.2) and (7.4), we see that at an extremum dV = 0 the fermionic
mass matrix (

∂2W
∂φi∂φj

− ig√
2
φ∗l Ta

l
j

− ig√
2
φ∗kTb

k
i 0

)
has at least one zero eigenvalue, with eigenvector given by(

f i

i
√

2da

)
. (7.5)

This eigenvector is non-trivial only in a SUSY breaking vacuum (i.e. when
f i and da are not all zero). Hence we have proven the Goldstone theorem for
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broken supersymmetry: a vacuum spontaneously breaking SUSY necessarily
possesses a massless fermionic particle in the spectrum. This particle is
usually called the Goldstone fermion of broken SUSY, or more familiarly the
goldstino.

We thus see that supersymmetry in this respect is much similar to any
other continuous global symmetry. Indeed, the Goldstone theorem dictates
that for any spontaneously broken (bosonic) global symmetry there must be
a massless boson in the spectrum, the Goldstone boson.

We should point out that there is also a more general proof of the Gold-
stone theorem for broken SUSY, which is not based on an explicit classical
Lagrangian, but on the properties of the supercurrent. This more general
proof establishes the presence of a goldstino even if SUSY is broken in a
strongly coupled phase of a given theory, where classical arguments may not
apply.

7.1.3 The supertrace theorem

Let us now restrict to a theory of chiral superfields only, in order to avoid too
involved formulas. We would like to consider the mass spectrum in a generic
vacuum, where supersymmetry is possibly broken.

We have already seen in the previous subsection that the fermionic mass
matrix is given by

Lfmass = −1
2
ψiMf

ijψ
j + c.c.,

where

Mf
ij =

∂2W

∂φi∂φj
≡ ∂i∂jW. (7.6)

The physical squared masses of the fermions (i.e. the real poles in the tree-
level fermionic propagators) will be given by the eigenvalues of

Mf
ijMf∗jk ≡ (M2

f )
k
i = ∂i∂jW∂̄∂k̄W̄ ,

where we have defined ∂ı̄ ≡ ∂
∂φ̄i

and the sum over the index j is intended.

The full squared mass matrix over all of the fermionic degrees of freedom (of
both chiralities) is thus

M2
f =

(
∂i∂jW∂̄∂k̄W̄ 0

0 ∂ı̄∂̄W̄∂j∂kW

)
. (7.7)
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Consider now the scalar mass matrix. It is obtained by expanding the
scalar potential to quadratic order around the vacuum values of the scalars.
We get:

Lbmass = −∂iW∂ı̄W̄

= −(∂iW + ∂i∂jWφj + 1
2
∂i∂j∂kWφjφk) ·

·(∂ı̄W̄ + ∂ı̄∂l̄W̄φ∗l + 1
2
∂ı̄∂l̄∂m̄W̄φ∗l φ

∗
m).

In the above expression, we define the fields φi as their fluctuation around
the minimal value, while the derivatives of the superpotential are evaluated
at the vacuum values. Note that for a renormalizable superpotential the
expansion indeed stops at quadratic order, while in a more generic situation
it can go on, but since we are interested only in quadratic terms we do not
need the higher order terms anyway.

Supposing that we expand around an extremum, and neglecting the con-
stant vacuum energy term, the quadratic mass terms are hence given by

Lbmass = −∂i∂jW∂ı̄∂k̄W̄φjφ∗k − 1
2
∂i∂j∂kW∂ı̄W̄φjφk − 1

2
∂ı̄∂̄∂k̄W̄∂iWφ∗jφ

∗
k.

(7.8)
Eventually, we have

Lbmass = −1
2
( φ∗i φi )(M2

b)ij

(
φj

φ∗j

)
,

with

(M2
b)ij =

(
∂ı̄∂k̄W̄∂j∂kW −∂ı̄∂̄∂k̄W̄f ∗k
−∂i∂j∂kWfk ∂i∂kW∂̄∂k̄W̄

)
. (7.9)

There are two immediate consequence that one can gather by comparing
(7.7) and (7.9). First of all, there will be mass splittings in the eigenvalues
of M2

f and M2
b if and only if f 6= 0. Indeed, otherwise the two matrices

are identical, in agreement with the fact that when SUSY is unbroken the
spectrum of fermions and bosons is degenerate.

However also in a broken SUSY vacuum there is a relation between the
two mass spectra. We can compute the sum of the eigenvalues by taking
the trace of the two mass matrices. For the fermionic one, which is block
diagonal, we get

trM2
f = 2

∑
i∈f

m2
i = 2∂i∂jW∂ı̄∂̄W̄ ,
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(the factor of 2 in front of the sum corresponds to the helicities of each
fermion), and for the bosonic one we obtain

trM2
b =

∑
i∈b

m2
i = 2∂i∂jW∂ı̄∂̄W̄ ,

which is the same since the two matrices only differ by off-diagonal elements.
The important consequence is that the supertrace, that is the trace weighted

according to the statistics, vanishes:

StrM2 =
∑
i∈b

m2
i − 2

∑
i∈f

m2
i = 0. (7.10)

This important result generalizes straightforwardly to theories with gauge
fields.

It means that when SUSY is broken in such a classical fashion, the masses
of the previously degenerate superpartners are split around an average value,
which is related to the unbroken (SUSY) mass.

This fact, which is a consequence of the theory being supersymmetric,
is unsatisfactory because it leads to strong constraints on the spectrum of
superpartners, which are not met phenomenologically. For instance, for every
quark there should be at least a real component of the squark superpartner
which would be lighter: this is clearly not observed.

Does this mean that spontaneous SUSY breaking is not viable for the
MSSM? In reality, the “supertrace theorem” just means that SUSY is not
spontaneously broken at tree level (i.e. classically) within the MSSM itself.
Indeed, a way out for this problem is to assume that SUSY breaking is not
a tree level phenomenon, or that it happens in a separate, hidden sector.
In both cases, or even better in a combination of these two possibilities,
SUSY breaking is transmitted to the MSSM by quantum corrections. At the
quantum level, there are effective corrections to the kinetic terms (e.g. wave
function renormalization) such that the supertrace theorem can be violated,
and sizable masses for all the superpartners can be generated. We will come
back briefly on this issue when discussing the soft terms.

7.2 Examples of SUSY breaking theories

The supertrace theorem notwithstanding, and for the reasons just mentioned,
it is still relevant to review models of tree level spontaneous SUSY breaking.
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We will discuss below the two archetypal models, one of d-term breaking and
the other of f -term breaking.

7.2.1 d-term breaking: Fayet-Iliopoulos model

The Fayet-Iliopoulos model is a very simple model, where one essentially
plays the f -terms and the d-terms against each other.

In its simplest incarnation, it is the SQED model that we had already
considered previously, with a mass term for the quark superfields and the
addition of the FI term (4.58). All in all the model is described by

L =

∫
d2θd2θ̄

(
Φ̄e2gV Φ + Φ̃e−2gV ¯̃Φ

)
+

∫
d2θ mΦΦ̃ +

∫
d2θ̄ m∗Φ̄ ¯̃Φ

−1

4

∫
d2θ WαWα −

1

4

∫
d2θ̄ W̄α̇W̄ α̇ +

∫
d2θd2θ̄ 2ξgV. (7.11)

Recall that the last term is gauge invariant because V is an abelian real
superfield, and that ξ is a real parameter.

The potential is given by

−V = gd(φ∗φ− φ̃φ̃∗) + ff ∗ + f̃ f̃ ∗ + (mφf̃ +mφ̃f + c.c.) + 1
2
d2 + gξd.

Solving for the auxiliary fields d, f and f̃ , we have

f ∗ = −mφ̃
f̃ ∗ = −mφ
d = −g(φ∗φ− φ̃φ̃∗ + ξ), (7.12)

so that the potential for the scalars becomes

V = 1
2
g2(|φ|2 − |φ̃|2 + ξ)2 + |m|2(|φ|2 + |φ̃|2). (7.13)

It is clear that we will not find SUSY vacua. Indeed, f = 0 = f̃ implies
that the scalars themselves must vanish, φ = 0 = φ̃, while, when ξ 6= 0,
the condition d = 0 would imply that either φ or φ̃ must be non zero. It is
then impossible to set to zero all the right hand sides of (7.12), and SUSY is
broken.

To find the non SUSY vacuum, we extremize the potential V :

∂φV = g2(|φ|2 − |φ̃|2 + ξ)φ∗ + |m|2φ∗,
∂φ̃V = g2(|φ̃|2 − |φ|2 − ξ)φ̃∗ + |m|2φ̃∗.
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We see that we have a vacuum at φ = 0 = φ̃. Assuming without loss of

generality that ξ > 0, we also have a vacuum for φ = 0 and |φ̃|2 = ξ − |m|
2

g2 ,

which exists only when |m|2 < g2ξ. When this inequality is satisfied, it is a
simple matter to show that the vacuum with a non trivial scalar VEV is the
stable one, while the other at the origin becomes unstable.

When the stable vacuum is at the origin, we have φ = 0 = φ̃ which implies
that

f = 0 = f̃ and d = −gξ 6= 0,

the vacuum energy being
V = 1

2
g2ξ2.

This is pure d-term SUSY breaking, and it is rather easy to see that the
goldstino in this case is just the photino λ, the only massless fermion around
in this vacuum.

When the stable vacuum is the one with φ = 0 and |φ̃|2 = ξ − |m|2
g2 ,

we see that both f 6= 0 and d 6= 0. This situation becomes one of pure

f -term SUSY breaking only in the limit ξ � |m|2
g2 . Then the role of the

goldstino is essentially played by ψ. (Indeed, ψ̃ and λ become massive due to
the super-Brout-Englert-Higgs mechanism: φ̃ '

√
ξ breaks the U(1) gauge

symmetry and through the Yukawa couplings gives a fermionic Dirac mass
term Lfm = −ig

√
2ξψ̃λ, while ψ remains massless.)

7.2.2 f-term breaking: O’Raifeartaigh model

The model first proposed by O’Raifeartaigh is composed of chiral superfields
only. The idea here is to have a superpotential W such that one cannot set
to zero all the f -terms. Of course this means that W is not generic.

A superpotential that works is the following. There must be three differ-
ent chiral superfields:

W = hX(Φ2
1 − µ2) +mΦ1Φ2. (7.14)

If we call X (by a slight abuse of notation), φ1 and φ2 the lowest components
of the respective superfields, then the f -term equations give the following
conditions

−f ∗X = h(φ2
1 − µ2), (7.15)

−f ∗1 = 2hXφ1 +mφ2, (7.16)

−f ∗2 = mφ1. (7.17)
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It is evident that one cannot set fX = 0 and f2 = 0 simultaneously, as soon
as µ 6= 0. Let us look then at the scalar potential

V = |h|2|φ2
1 − µ2|2 + |2hXφ1 +mφ2|2 + |m|2|φ1|2. (7.18)

It will have an extremum dV = 0 if

2h∗φ∗1(2hXφ1 +mφ2) = 0,

2|h|2(φ2
1 − µ2)φ∗1 + 2h∗X∗(2hXφ1 +mφ2) + |m|2φ1 = 0,

m∗(2hXφ1 +mφ2) = 0.

From the third equation we see that we can solve for φ2:

φ2 = −2h

m
Xφ1. (7.19)

Then the first equation is also satisfied, and we are left with the second one,
simplified as

2|h|2|φ1|2φ1 − 2|h|2µ2φ∗1 + |m|2φ1 = 0. (7.20)

Note that by rotations of X, Φ1 and Φ2 we can set for simplicity all constants
to be real and positive.

It is evident that (7.20) has always the solution φ1 = 0. At this vacuum,
we have also φ2 = 0 while X is undetermined.

Otherwise, if φ1 6= 0, since we have chosen all constants to be real and
positive, we see that also φ1 has to be real, and has to satisfy

2h2φ2
1 = 2h2µ2 −m2.

Thus this alternative vacuum exists only when 2h2µ2 ≥ m2. When this
inequality is satisfied, the latter vacuum is the stable one. Otherwise, the
only vacuum is the one at the origin φ1 = φ2 = 0. From now on we set
ourselves in this vacuum, and suppose that it is stable.

The f -terms are

f1 = f2 = 0, f ∗X = hµ2,

so that the vacuum energy is given by

Vvac = |hµ2|2.
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What is puzzling about this vacuum is that there is actually a complex plane
of vacua, parameterized by 〈X〉. This is a usual fact for SUSY vacua, but
it is rather unusual for SUSY breaking vacua. In non-SUSY theories, such
degeneracies are expected to be lifted by quantum corrections.

Actually, the whole X supermultiplet is massless in the non-SUSY ground
states. The fermionic component, ψX , is the goldstino, and then it has a good
reason to be massless. The same can be said about the phase of the complex
scalar X, since as we will argue below it corresponds to the Goldstone boson
for broken R-symmetry. However the modulus |X| has no specific reason
at all to stay massless. Presumably, it should acquire a mass because of
quantum corrections in the non-SUSY vacuum.

Before considering this issue, and actually in order to do so, we first
compute the spectrum of masses in a vacuum parameterized by the VEV of
X.

We start by considering the fermionic mass matrix, computed thus in the
vacuum with φ1 = φ2 = 0 and X arbitrary:

Lfmass = −1

2
( ψX ψ1 ψ2 )

 0 0 0
0 2hX m
0 m 0

 ψX
ψ1

ψ2

+ c.c., (7.21)

so that

M2
f =

 0 0 0
0 4|hX|2 + |m|2 2hXm∗

0 2h∗X∗m |m|2

 . (7.22)

There is a vanishing eigenvalue (for ψX), while the other two are given by

m2
f,± = |m|2 + 2|hX|2 ±

√
4|hXm|2 + 4|hX|4

=
(
|hX| ±

√
|m|2 + |hX|2

)2

. (7.23)

As for the bosons, we use the general expression (7.9), and obtain

Lbmass = −1
2
v†M2

bv, (7.24)

with

v† = ( X φ1 φ2 X∗ φ∗1 φ∗2 ), (7.25)
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and

M2
b =


0 0 0 0 0 0
0 4|hX|2 + |m|2 2hXm∗ 0 −2|h|2µ∗2 0
0 2h∗X∗m |m|2 0 0 0
0 0 0 0 0 0
0 −2|h|2µ2 0 0 4|hX|2 + |m|2 2h∗X∗m
0 0 0 0 2hXm∗ |m|2

 .

(7.26)
As is clear from the above, the complex scalar X is classically massless. The
4 other eigenvalues are given by

m2
b,±±′ = |m|2 + 2|hX|2 ±′ |hµ|2 ±

√
4|hXm|2 + 4|hX|4 ±′ 4|h2µX|2 + |hµ|4.

(7.27)
In the expression above we have distinguished two independent choices of
sign by ± and ±′, which make up a total of 4 different eigenvalues.

We see that for µ = 0 (i.e. when SUSY is not broken) then the second
choice of sign becomes trivial, and we have m2

b,± = m2
f,±. Otherwise, as soon

as µ 6= 0, there will be mass splittings. Of course, we can also check that∑
m2
b =

∑
m2
f . Lastly, one can see that for |m|2 < 2|hµ|2, we have one

negative eigenvalue, m2
b,−− < 0, and the vacuum at the origin is no longer

stable.
We will now see that the spectrum is crucial in computing the effective

potential that will eventually lift the flat direction along X.

7.3 Quantum corrections to the vacuum en-

ergy

We now wish to evaluate the quantum corrections to the vacuum energy.
Since SUSY is broken, these are no longer required to vanish by the theorem
discussed in the previous chapter.

This exercise is particularly interesting in models such as the one that we
have just discussed above, where the vacua are parameterized by a modulus
X. In such models, we expect to find a result which depends on X, and thus
manifests itself as a potential for the light scalar X, which then acquires a
mass so that the moduli space is lifted. Such moduli that are lifted after
taking into account quantum corrections are called pseudomoduli. Actually,
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in a broken SUSY vacuum all massless scalar which are not Goldstone bosons
are pseudomoduli and potentially acquire a mass by quantum corrections.

We thus compute the one-loop vacuum energy, by just assuming that in
the loop are circulating all bosons and fermions with their specified masses.
Recall that the vacuum energy density for a free (scalar) field of mass m is
given, in Euclidean space, by

Z(0) ≡ e−
∫
d4xE ≡

∫
[Dφ]e−SE(φ) =

∫
[Dφ]e−

∫
d4xφ(−2+m2)φ

=
[
det(−2 +m2)

]−1/2
= e−

1
2

tr log(−2+m2).

Going to Fourier space, this gives a vacuum energy density

E =
1

2

∫ Λ

d4p log(p2 +m2). (7.28)

It is obviously divergent, and we have inserted an explicit UV cut-off Λ. It
is however of interest to extract its dependence on m2:

∂

∂m2
E =

1

2

∫ Λ

d4p
1

p2 +m2
=

1

2

∫ ∞
d4p

∫ ∞
1

Λ2

dt e−t(p
2+m2)

=
1

2

∫ ∞
1

Λ2

dt e−tm
2

∫
d4pe−tp

2 ∝
∫ ∞

1
Λ2

dt e−tm
2 1

t2

In the second equality we have simply traded a way to implement the cut-
off with another which is more convenient for this computation, while in the
last equality we have discarded numerical factors coming from the 4 Gaussian
integrals (but we keep track of the signs).

We thus obtain
∂

∂m2
E ∝ m2

∫ ∞
m2

Λ2

ds
1

s2
e−s. (7.29)

We now evaluate the remaining integral, recalling that we are interested in
taking eventually the limit Λ→∞. We have∫ ∞

m2

Λ2

ds
1

s2
e−s =

∣∣∣∣−1

s
e−s − (log s)e−s

∣∣∣∣∞
m2

Λ2

−
∫ ∞
m2

Λ2

ds (log s)e−s

=
Λ2

m2
+ log

m2

Λ2
+ finite.
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Hence we have
∂

∂m2
E ∝ Λ2 +m2 log

m2

Λ2
+m2γ,

where γ is a finite constant. This eventually implies

E ∝ Λ4 +m2Λ2 +m4 log
m2

Λ2
, (7.30)

where Λ4 is the integration constant, we have suppressed all terms which
vanish when Λ → ∞, and we have redefined Λ in such a way as to have no
terms with just m4.

Now supersymmetry comes finally into play. When summing over all the
particles in the spectrum, recall that there is a minus sign for the fermions (it
comes from the fact that the Grassmann integration brings down a positive
power of the determinant). Then the term proportional to Λ4 cancels because

tr B1− tr F1 = 0,

i.e. the number of bosonic modes is equal to the number of fermionic modes.
The term proportional to Λ2 cancels too because of the supertrace theo-

rem
tr Bm

2 − tr Fm
2 = 0.

Hence we are left with

Veff ∝ (tr B − tr F )m4 log
m2

Λ2
. (7.31)

This formula, known as the Coleman-Weinberg effective potential, thus gives
a non-trivial one-loop correction to the vacuum energy in a SUSY breaking
vacuum. (It is obvious that in a SUSY vacuum, the above expression vanishes
because of the degeneracy of the spectrum.) Let us evaluate it further for
the example that we discussed previously.

7.3.1 The case of the O’Raifeartaigh model

We should now just plug in (7.31) the squared mass eigenvalues that we
obtained before for the O’Raifeartaigh model, see (7.23) and (7.27).

As we have just noted, it is clear that since when µ = 0, the bosonic and
fermionic masses are degenerate, m2

f = m2
b , then we have that Veff(µ = 0) = 0
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as expected, according to the non-renormalization theorem. There should
then be an overall power of |µ| in front of the effective potential Veff .

Note also that all the squared mass eigenvalues depend on X only through
|X|2. Hence we must have

Veff = Veff(|X|2).

We see that the one-loop vacuum energy becomes an effective potential for
the pseudomodulus X. From the expression above, it is clear that X = 0 is
an extremum. We still have to check that in the expansion

Veff = V(0)
eff + V(1)

eff |X|
2 + . . .

the zero order term V(0)
eff is finite, and that V(1)

eff > 0 for stability of the
extremum at the origin.

Let us compute V(0)
eff :

V(0)
eff = (|m|2 + 2|hµ|2)2 log

|m|2 + 2|hµ|2

Λ2
+ |m|4 log

|m|2

Λ2

+(|m|2 − 2|hµ|2)2 log
|m|2 − 2|hµ|2

Λ2
+ |m|4 log

|m|2

Λ2

−2|m|4 log
|m|2

Λ2
− 2|m|4 log

|m|2

Λ2

= |m|4

(

1 + 2

∣∣∣∣hµm
∣∣∣∣2
)2

log
|m|2

Λ2

(
1 + 2

∣∣∣∣hµm
∣∣∣∣2
)

+

(
1− 2

∣∣∣∣hµm
∣∣∣∣2
)2

log
|m|2

Λ2

(
1− 2

∣∣∣∣hµm
∣∣∣∣2
)
− 2 log

|m|2

Λ2


= |m|4


(

1 + 2

∣∣∣∣hµm
∣∣∣∣2
)2

log

(
1 + 2

∣∣∣∣hµm
∣∣∣∣2
)

+

(
1− 2

∣∣∣∣hµm
∣∣∣∣2
)2

log

(
1− 2

∣∣∣∣hµm
∣∣∣∣2
)+ 8|hµ|4 log

|m|2

Λ2
.

The last (divergent) term accounts for the renormalization of the coupling of
the quartic interaction in the potential, namely

|h|2 → |h|2(1 + 8|h|2 log(|m|2/Λ2)).
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Otherwise, the one-loop effective potential for X = 0 is clearly finite.
We note that V(0)

eff (|µ|2) = V(0)
eff (−|µ|2) and, of course, V(0)

eff (0) = 0, so that

V(0)
eff ∝ |µ|

4.

In order to compute V(1)
eff , we need to expand the eigenvalues in |X|2, and

plug the result back into the expression for the Coleman-Weinberg effective
potential. We will not attempt to do it here (but rather refer to K. A. Intrili-
gator and N. Seiberg, “Lectures on Supersymmetry Breaking,” Class. Quant.
Grav. 24 (2007) S741 [arXiv:hep-ph/0702069]), and just state that the result
of this procedure is that one finds a positive squared mass in front of the term
|X|2.

Hence the true quantum vacuum is at X = 0, and the complex plane of
degenerate vacua is lifted as expected. Actually, we were willing to admit a
circle of degenerate vacua, associated to a Goldstone boson. However it is
easy to understand that X = 0 is the most symmetrical point on the complex
plane, no symmetry is broken and then no bosonic mode should be massless.
We will clarify in the next section of which global symmetry we are talking
about.

7.4 SUSY breaking and R-symmetry

Let us concentrate now on global symmetries. Recall that for n chiral super-
fields and a generic superpotential W (Φi), the f -term conditions are also n
generic holomorphic equations for the n complex variables φi:

∂W

∂φi
= 0. (7.32)

These equations have generically a set of distinct solutions, which would
imply the existence of isolated SUSY vacua. We thus learn that for the
f -term equations not to have a solution, W must be non-generic. Now,
a non-generic superpotential is acceptable if there is a symmetry which is
responsible for the non-genericity. Otherwise it is not considered natural,
but finely tuned.

If we consider an ordinary symmetry (usually referred to as axial), such
that

Φi → eiqiαΦi,
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we must require that W (Φi) is invariant. This means

δW = 0 ⇔
∑
i

qiφi
∂W

∂φi
= 0, (7.33)

for any value of φi (i.e. off-shell as well as on-shell). This condition is always
satisfied by solutions of the f -terms (7.32). Thus, one might use a (com-
plexified) symmetry transformation to rescale away one of the scalar fields,
but the equation above tells us that simultaneously the n f -terms are not all
independent, one is redundant. We are again in a situation with the same
number of equations and variables. Hence an ordinary symmetry does not
help.

Consider instead an R-symmetry. Here we must require that the super-
potential W (Φi) be of charge 2

W → e2iαW.

This means that

δW = 2iαW ⇔
∑
i

qiφi
∂W

∂φi
= 2W, (7.34)

again for any value of φi. This tells us that the n f -terms are not all inde-
pendent, but rather a combination of them sums up to the superpotential
itself. However, from the algebraic point of view, this only tells us that the
set of equations (7.32) sums to yet another non trivial equation, W = 0. As
far as looking for F-flat solutions is concerned, this is generically not helpful,
and hence we are left with n non-trivial equations to solve. On the other
hand, we can still use a complexified R-symmetry transformation to set one
field, say, to 1. We are thus left with n − 1 variables, and now generically
the system of equations will not have a solution.

The argument above is quite formal, but is convincing of the fact that
one needs an R-symmetry and a generic superpotential respecting it to have
a chance of achieving spontaneous SUSY breaking at tree level. In practice,
one writes W taking into account that it preserves the U(1)R symmetry and
will find that fi = 0 has no solutions.

Let us revisit in this light the O’Raifeartaigh model. Given the superpo-
tential

W = hX(Φ2
1 − µ2) +mΦ1Φ2,
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we see that it preserves an R-symmetry for which

R(X) = 2, R(Φ1) = 0, R(Φ2) = 2. (7.35)

One can show that W is indeed of the most generic (renormalizable) form
compatible with these charges, up to shifts and relabeling of the fields.

If we were to add R-symmetry breaking terms such as

δW = 1
2
m′X2 or δ′W = 1

2
m′′Φ2

2, (7.36)

it is easy to see that we immediately reintroduce SUSY vacua. Nevertheless,
there is still the possibility of keeping some metastable SUSY breaking vacua
somewhere else in field space. For instance, this can be the case when the
above corrections are small. However, the physics becomes a bit subtle since
it generically involves playing one-loop terms (such as the ones coming from
the Coleman-Weinberg effective potential) against tree-level ones.

As a last comment, note that because of the R-symmetry “theorem”,
when SUSY is broken R-symmetry is also most likely to be broken sponta-
neously. There will thus be a massless (real) Goldstone boson associated to
it. However, it appears that, essentially because of holomorphy, at tree level
the Goldstone boson is complexified. There is then automatically at least
one pseudomodulus. It is to be noted that in the metastable vacua, the issue
of the pseudomoduli is particularly subtle to discuss, since it could happen
that the effective potential is such that the pseudomodulus could just roll
down to the SUSY vacuum.

7.5 Explicit SUSY breaking: soft terms

Let us now discuss very briefly the other possibility for supersymmetry break-
ing, namely the introduction of explicit SUSY breaking terms in the La-
grangian.

As we have already argued, it is important that the SUSY breaking terms
involve dimensionful, renormalizable couplings. Indeed, the virtue of SUSY
resides in the cancellation of UV divergencies. The latter takes place because
dimensionless Yukawa, gauge and quartic couplings are identified. If we
were to spoil these identifications by introducing non-SUSY dimensionless
couplings, we would destroy all effects of supersymmetry altogether. On the
other hand, introducing couplings of positive mass dimension (like masses
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for scalars or fermions, or cubic scalar couplings) should not spoil SUSY
cancellations for energies above the scale set by the new coupling itself. In
other words, the SUSY breaking terms set the UV cut-off for cancellations
of divergencies. Such SUSY breaking terms, that preserve the UV structure
of SUSY theories, are called soft.

We will not here review all such terms and the phenomenology associated
to them, but rather refer to the reviews by Martin and Terning cited in
Chapter 1. We will just very briefly comment on the relation between explicit
SUSY breaking by soft terms and spontaneous SUSY breaking.

An example of a soft term is, for instance, to add

δLsusybr = m2
s|φ|2 (7.37)

to a massless Wess-Zumino model, or more generally just a correction to the
scalar mass square that makes it different from the mass of the fermionic
partner. Other bilinear soft terms are

δL′susybr = Bmφφ̃+ c.c. (7.38)

or

δL′′susybr = mλλ
2 + c.c., (7.39)

where λ is a gaugino.

Terms such as (7.37) and (7.38) are for instance needed in the Higgs
sector of the MSSM in order to correctly implement Electro-weak symmetry
breaking. While of course terms such as (7.39) and (7.37) are also expected
to give masses to the superpartners of the SM particles in order to explain
why we have not yet seen them.

All of these terms, being mass terms, are clearly renormalizable. It is
interesting to rewrite them in a supersymmetric fashion using an extra chiral
superfield, called spurion, which we will denote by U . This background
superfield has the property that it has a non vanishing f -term

U = θ2F. (7.40)

Using it, we can write the above soft terms as integrals over superspace. We
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have

δLsusybr =

∫
d2θd2θ̄

UŪ

M2
ΦΦ̄, (7.41)

δL′susybr =

∫
d2θ UΦΦ̃ + c.c., (7.42)

δL′′susybr =

∫
d2θ

U

M
WαWα + c.c. (7.43)

In the above expressions, M is some UV scale. From them, we obtain soft
masses like |ms|2 = |F |2/M2, Bm = F and mλ = F/M .

We now see that the gap from explicit to spontaneous SUSY breaking is
small: all we have to do is to promote U to a dynamical superfield, which
acquires the f -term spontaneously, and then generates the soft terms by its
interactions with the rest of the superfields. From this point of view, it is
then clear that all the virtues of a SUSY theory (i.e. the UV cancellations)
are preserved in presence of the soft terms, as much as in a theory which
breaks SUSY spontaneously.

We should here just add a remark concerning the terms (7.41) and (7.43).
At face value, they look like non-renormalizable additions to a SUSY La-
grangian. This is evident from the inverse powers of M which, unless spec-
ified otherwise, must be generically a UV scale of the theory (such as the
Planck mass Mp or the GUT scale). However from the component version of
the same terms (7.37) and (7.39), it is obvious that they should not introduce
spurious UV divergencies. What this really means is that, on one hand, it is
only consistent, from the renormalization point of view, to introduce all such
soft terms. On the other hand, in a fully renormalizable theory, where U is
dynamical, these terms are to be thought of as effective terms coming from
integrating out degrees of freedom at the scale M .

It is to be noted that on the other hand a soft term like (7.42) is fully
renormalizable even from the SUSY point of view. Hence by adding it we do
not expect to be forced to add (soft) counter-terms to the bare Lagrangian.

7.5.1 The mediation paradigm

This point of view on the soft terms and explicit SUSY breaking is even more
physical by the following argument. Given that spontaneous SUSY breaking
is not possible within the MSSM, we must assume that there is some hidden
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sector where SUSY is broken spontaneously. Then one has to assume that
there exist fields that interact both with the hidden sector and the visible
one (the MSSM), and which will then mediate SUSY breaking.

These fields can be chiral superfields, which couple to the visible sec-
tor through the superpotential. This is the simplest of the models, where
mediation happens at tree level.

Another option is that the mediating fields are the gauge supermultiplets
of the visible sector itself. In this case, typically, the SUSY breaking is
induced in the gauge supermultiplet and then on the matter chiral superfields
through radiative corrections, i.e. at the quantum level. Note that it is in
this way that, for instance, the supertrace theorem is evaded.

If all other options are absent, and the hidden sector is completely decou-
pled from the visible one, there will always be (super)gravity that universally
couples to both. Hence gravity will mediate SUSY breaking in this last sce-
nario. Gravity mediation effects will take the form of effective terms like
(7.41)–(7.43), where now M ≡Mp.

It is clear that what all these models of mediation of SUSY breaking
are all about, is to provide a theory of the soft terms, in other words a
predictive pattern for these extra terms that one can (and must) add to
the MSSM Lagrangian. There is a very large amount of research in this
direction, which has produced several different schemes, each with its own
successes and shortcomings. Obviously, the community is eagerly awaiting
and hoping that from the LHC data a pattern of measured soft masses could
start to emerge (if superpartners are out there at all!), so that one could
finally confront models with experiment.

7.6 Dynamical SUSY breaking

Let us close this chapter on SUSY breaking by mentioning that the most
interesting models of spontaneous SUSY breaking are not the ones where
SUSY is broken at tree level, that is classically, but rather at the quantum
level. Now, since we had demonstrated that there are no perturbative correc-
tions to the vacuum energy, when we start from a classically SUSY vacuum,
then the only option is that non-perturbative effects break SUSY. This is of
course most likely to happen in a gauge theory.

This is interesting, because the scale of SUSY breaking will necessarily be
related to the dynamically generated scale of the theory Λdyn, which much
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as in QCD, is naturally hierarchically small with respect to any UV scale,
for instance ΛQCD � MGUT . That would essentially explain the hierarchy
between MEW , which is related to the scale of SUSY breaking, and MGUT .

However, dealing with strongly coupled gauge theories is not very simple,
though supersymmetry helps a good deal. In some cases it is possible to
reformulate the low-energy dynamics of a strongly coupled (confining) gauge
theory through a theory involving chiral superfields only. Typically there
will be a highly non-trivial (and non-calculable) kinetic term, but the su-
perpotential can usually be guessed from symmetry arguments, and possibly
instanton computations. If the superpotential happens to have the form of a
generalized O’Raifeartaigh model, then we can deduce with some confidence
that the model breaks SUSY dynamically.

There are many non-trivial checks one can do, and great advances have
been made in the last years. This topic however would require a much deeper
study of non-perturbative aspects of SUSY gauge theories. This is left for a
more advanced course.
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Appendix A

Anomalies: a brief introduction

This appendix aims at providing a brief introduction to anomalies in Quan-
tum Field Theory. The only relation to supersymmetry will be that anomalies
will be discussed in a formalism using Weyl fermions, as in the rest of these
notes, rather than using Dirac fermion as is usual in most textbooks. Other
than that, supersymmetry will not be relevant to this appendix. However,
anomalies play a crucial role in further developments such as exact results
for supersymmetric gauge theories. In this respect they must be familiar for
anyone interested in developing further insight in supersymmetric theories.

There are many textbooks and on-line lecture notes that review anomalies
in depth. A few are the following:

• M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field
theory,” chapter 19.

• M. Srednicki, “Quantum field theory,” chapters 75–77.

• J. A. Harvey, “TASI 2003 lectures on anomalies,” [arXiv:hep-th/0509097
[hep-th]].

• A. Bilal, “Lectures on Anomalies,” [arXiv:0802.0634 [hep-th]].

There is also a number of important original papers that can be listed here,
and that have inspired this short chapter or contain proofs of some claims:

• K. Fujikawa, “Path Integral Measure for Gauge Invariant Fermion The-
ories,” Phys. Rev. Lett. 42 (1979), 1195-1198.
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• D. J. Gross and R. Jackiw, “Effect of anomalies on quasirenormalizable
theories,” Phys. Rev. D 6 (1972), 477-493.

• L. Alvarez-Gaume and E. Witten, “Gravitational Anomalies,” Nucl.
Phys. B 234 (1984), 269.

• L. Alvarez-Gaume and P. H. Ginsparg, “The Structure of Gauge and
Gravitational Anomalies,” Annals Phys. 161 (1985), 423.

A.1 What do we mean by an anomaly

In quantum field theory, an anomaly occurs if a symmetry, which is preserved
by the classical field theory, is actually not consistent with the quantization
of the theory.

Let us immediately clarify that this phenomenon has nothing to do with
spontaneous symmetry breaking. In the latter case, the symmetry acts non-
trivially on the vacuum state of the theory. This can happen also classically,
of course. In the case of an anomaly on the other hand, one is dealing with
problems that are intrinsic to the quantization process.

To exemplify, recall that there is one anomaly that is actually so common
in QFT that it is not usually called so. It is the appearance of a non-trivial
scale dependence in theories which are classically scale invariant. Most of the
examples in a canonical QFT course or textbook are such: the massless scalar
theory with a λφ4 interaction, massless QED, pure Yang-Mills theory, mass-
less QCD all are classically scale invariant. In other words, their Lagrangians
do not contain any dimensionful constant. However, all these theories have
in common a non-zero β-function for their dimensionless couplings:

β(g) = µ
dg

dµ
6= 0 . (A.1)

Here the sign of the β-function will not be important. What is important
is the origin of such β(g) 6= 0. Actually it is already apparent from the
definition of β(g) itself. The breaking of the scale invariance of the classical
theory can be traced back to the fact that it is necessary to introduce a
scale µ in order to properly quantize the theory, more precisely in order to
renormalize it.

In other words, we say that the classical scale symmetry is anomalous
because we cannot quantize consistently the theory, i.e. we cannot regularize



A.2. CHIRAL ANOMALY FOR A WEYL FERMION 163

and renormalize it, without introducing a scale, that eventually appears in
physical quantities (more precisely, it is the variations with respect to the
choice of this arbitrary reference scale that are physically relevant).

It is then natural to ask whether also other symmetries are at risk of being
broken in a similar way: for instance, Poincaré symmetry, global internal
symmetries, gauge symmetries. Of course, the answer is known: a correct
quantization procedure pays attention that those symmetries are respected.
For instance, Poincaré symmetry and gauge invariance are taken care of by
the most popular regularization schemes, such as dimensional regularization
and Pauli-Villars. This is mostly true also for global internal symmetries, for
instance phase rotations of complex scalars or of fermions.

However, if one is looking for potentially problematic situations, one could
ask what could go wrong with our preferred regularizations. In dimensional
regularization, fermions are the obvious suspects, since it can be non-trivial
to generalize to d = 4 − ε dimensions the γ-matrices (or the σµ and σ̄µ

matrices in Weyl notation). It turns out that by stating that γµγµ = d one
can proceed unhindered most of the time. However, it is more difficult to
extend to d dimensions the notion of the chirality matrix γ5 or, equivalently,
of the Levi-Civita tensor εµνρσ.

That chiral (i.e. Weyl) fermions can be the harbinger for trouble is con-
firmed by also contemplating Pauli-Villars regularization. It is straightfor-
ward to realize that it is impossible to use it for chiral fermions without
breaking the (chiral) symmetry rotating their phase. In Weyl notation, the
Lagragian for the massive Pauli-Villars field would read

LPV = −iψ̄σ̄µ∂µψ +
1

2
MPV(ψ2 + ψ̄2) , (A.2)

and its mass term explicitly breaks the U(1)ψ symmetry acting as ψ → eiαψ.
We thus expect possible trouble for symmetries in the presence of chiral,

massless fermions. In keeping with the rest of these lecture notes, we will aim
at providing a description of the anomaly purely in terms of Weyl fermions,
avoiding thus the language of Dirac fermions and the extensive use of γ5

which is done in most of the literature.

A.2 Chiral anomaly for a Weyl fermion

As we have just seen, a single Weyl fermion enjoys, when its mass is set to
zero, a symmetry that rotates its complex phase. It can be promoted to a
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gauge symmetry by writing

Lψ = −iψ̄σ̄µ(∂µ − iAµ)ψ ≡ −iψ̄σ̄µDµψ . (A.3)

It is now gauge invariance that prevents the presence of a mass term for ψ.

The gauge field transforms as usual, Aµ → Aµ + ∂µα. Note that in this
appendix, we will not be focusing on the dynamics of the gauge fields, hence
in particular it will not be relevant whether we will path integrate over them
eventually, or not. If we do not, then the gauge fields have to be understood
as backgrounds for the sources of the corresponding symmetry currents.

Of course, a way to give a gauge-symmetry preserving mass to ψ is to
introduce another Weyl fermion χ, with opposite charge

Lψ,χ = −iψ̄σ̄µ(∂µ − iAµ)ψ − iχ̄σ̄µ(∂µ + iAµ)χ, (A.4)

so that now the mass term

Lm = mψχ+m∗ψ̄χ̄ , (A.5)

i.e. a Dirac mass, is gauge invariant.

However, the theory whose Lagrangian is (A.4) has actually two global
symmetries, namely U(1)ψ rotating ψ and U(1)χ rotating χ. They are usually
combined into a vectorial U(1)V and an axial U(1)A, which act as

U(1)V : ψ → eiαψ , χ→ e−iαχ

U(1)A : ψ → eiαψ , χ→ eiαχ . (A.6)

In Dirac notation, Ψ =

(
ψ
χ̄

)
, those transformation laws read

U(1)V : Ψ→ eiαΨ , U(1)A : Ψ→ eiαγ5Ψ . (A.7)

The mass term (A.5) preserves U(1)V , which is the symmetry that we are
gauging, while it breaks explicitly U(1)A.

Let us now ask ourselves what it means for a symmetry to be preserved
or broken at the quantum level. Classically, the presence of a (continuous)
symmetry implies the conservation of the associated current Jµ. At the
quantum level, the conservation of a current translates into Ward identities,
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i.e. the vanishing of insertions of the operator ∂µJ
µ in n-point correlation

functions, up to contact terms:

〈∂µJµ(x)O1(x1) . . . On(xn)〉 =
∑
i

δ4(x− xi)Gi(x1, . . . , xn) . (A.8)

Hence a symmetry is broken at the quantum level if the corresponding Ward
identities cannot be satisfied.

For instance, some n-point functions with current insertions arise at loop
level, and regularization can prevent the Ward identities to be satisfied. In
four dimensions, this problem arises at one-loop with three current inser-
tions. The computation of this loop diagram, and its failure to satisfy the
expect Ward identities, is well documented in all the textbooks on QFT.
Here we will review an alternative argument (usually also reviewed in the
same textbooks), which is based on the path integral derivation of the Ward
identities. This approach has been pioneered by Fujikawa in his paper listed
above, and is exact rather than (a priori) perturbative as the one based on
loop computations.

Recall that a crucial ingredient in deriving the Ward identities (A.8) is
that the measure of the path integral is invariant under the symmetry. Let us
inspect more closely this assertion for a symmetry acting on a Weyl fermion.

The path integral is given by∫
DψDψ̄ eiSψ , with Sψ =

∫
d4x Lψ . (A.9)

Now U(1)ψ rotates ψ → ψ′ = eiαψ and ψ̄ → ψ̄′ = ψ̄e−iα, so that it seems
like the measure is indeed invariant. However let us be more cautious and
compute the Jacobian of the change of variables:

J (x, y) =
δψ′(x)

δψ(y)
= eiαδ4(x− y) , J̄ (x, y) =

δψ̄′(x)

δψ̄(y)
= e−iαδ4(x− y) .

(A.10)
Note that in these expressions α can be a local function α(x), nothing
changes.

Then the measure of the path integral changes as

Dψ′Dψ̄′ = (detJ )−1 Dψ (det J̄ )−1 Dψ̄ , (A.11)

where we recall that the −1 power of the (functional) determinant of the
Jacobian is there because of the Grassmann-odd nature of the variables ψ.
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We now rewrite
(detJ )−1 = e−tr logJ , (A.12)

and notice that J is the continuous-index equivalent of a diagonal matrix.
Now, for a diagonal matrix Amn = amδmn, it is well-known that a function of
the matrix keeps the diagonal form, and that it further evaluates as f(A)mn =
f(am)δmn, where the function f(x) is defined by its Taylor series.

Applying this wisdom to J , we have that logJ = iα(x)δ4(x−y), so that

tr logJ =

∫
d4x iα(x) δ4(x− x) , (A.13)

i.e. we are effectively summing over all the diagonal elements of the diagonal
matrix. This expression looks badly divergent, however we also have to add

tr log J̄ =

∫
d4x (−iα(x)) δ4(x− x) . (A.14)

Do we have an exact cancellation of these two divergent expressions? In order
to answer this question, we need of course to regularize these expressions and
see if the cancellation still takes place.

First of all we need to pay attention to what the measure factors Dψ and
Dψ̄ really mean. In practice we have to expand ψ and ψ̄ into a basis of eigen-
functions of some operator. The integrals will then be over the coefficients
of such expansions.

The most natural operator to consider would be kinetic one, −iσ̄µDµ,
however it has the problem that it changes the chirality of the fermion on
which it acts upon. It is then impossible to define chiral eigenfunctions of it.
A solution to this problem is then to square it, in the hermitian sense. We
will then take for ψ a basis of eigenfunctions of −σµDµσ̄

νDν , while for ψ̄ we
take a basis of eigenfunctions of −σ̄µDµσ

νDν :

− σµDµσ̄
νDνφn = εnφn ,

− σ̄µDµσ
νDνφ̄m = εmφ̄n , (A.15)

where φn and φ̄m are bosonic spinor wavefunctions, to be specific (so that
ψ(x) =

∑
n anφn(x), with an Grassmann-odd). Of course to properly de-

fine these expressions, we should Wick rotate to a Euclidean signature, and
further compactify R4 to S4. In the following we will assume that this is
possible but will refrain from doing so explicitly when not needed.
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Now the crucial remark is the following. If φn is a chiral eigenfunction with
εn 6= 0, then σ̄µDµφn is an antichiral eigenfunction with the same eigenvalue
εn. Indeed,

− σ̄µDµσ
νDν σ̄

ρDρφn = εnσ̄
µDµφn . (A.16)

Even more crucially, this fact is not true for zero-modes, i.e. when εn = 0,
since σ̄µDµφn = 0 in that case and one cannot define the antichiral eigen-
function from the chiral one. Of course the argument also works in the
opposite direction. As a result, all eigenfunctions come in chiral-antichiral
pairs, except the zero-modes which are unpaired.

In the divergent expressions (A.13) and (A.14), we replace the plane wave
basis

δ4(x− x) ≡
∫

d4k

(2π)4
eik·x e−ik·x (A.17)

by ∑
n

φ†n(x)φn(x) and
∑
m

φ̄†m(x)φ̄m(x) , (A.18)

so that eventually

tr logJ + tr log J̄ =

∫
d4x iα(x)

(∑
n

φ†n(x)φn(x)−
∑
m

φ̄†m(x)φ̄m(x)

)

=

∫
d4x iα(x)

(∑
n

∣∣∣∣∣
εn=0

φ†n(x)φn(x)−
∑
m

∣∣∣∣∣
εm=0

φ̄†m(x)φ̄m(x)

)
.

(A.19)

For a global rotation, i.e. for constant α, and assuming the eigenfunctions
are properly normalized, this expression is just proportional to the difference
of the number of chiral and antichiral zero-modes. Since it is an integer, it
cannot change continuously, and it is therefore called an index. The question
now is if this expression can be non-vanishing.

Before we continue, let us pause to see how a different cancellation is on
the other hand completely trivial. We already saw that if one adds another
Weyl fermion with opposite charge, as in (A.4), a mass term preserving the
symmetry can be added. Similarly, let us see what happens to the measure
under a transformation for which χ→ χ′ = e−iαχ. We have

Dψ′Dψ̄′Dχ′Dχ̄′ = DψDψ̄DχDχ̄(detJψ)−1(det J̄ψ)−1(detJχ)−1(det J̄χ)−1 ,
(A.20)
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where now together with (A.10) for Jψ and J̄ψ, we have

Jχ(x, y) = e−iαδ4(x− y) , J̄χ(x, y) = eiαδ4(x− y) . (A.21)

We thus see that

tr logJψ + tr logJχ =

∫
d4x (iα(x)− iα(x))

∑
n

φ†n(x)φn(x) = 0 , (A.22)

because ψ and χ, both chiral, share exactly the same basis of eigenfunctions.
Hence the cancellation is complete, and independently in both the chiral
and anti-chiral sectors. As a result, one can deduce that the fermionic mea-
sure DψDψ̄DχDχ̄ is invariant under vectorial symmetries, without need to
regularize the sums in (A.18).

For a chiral symmetry, on the other hand, we need to resort to a regu-
larization in order to evaluate (A.18). It turns out that the most suitable
one is to suppress the modes with a large eigenvalue by an exponential fac-
tor eεn/Λ

2
, where Λ is a cut-off scale that restores the original sum when

Λ → ∞. Note that (for Aµ = 0) εn is the eigenvalue of −σµ∂µσ̄ν∂ν = −2
and in Fourier space it is therefore equal to k2 = −k2

E, i.e. it is negative for
Euclidean momenta.

We have then to compute∑
n

φ†n(x) e−
σµDµσ̄

νDν

Λ2 φn(x) and
∑
m

φ̄†m(x) e−
σ̄µDµσ

νDν

Λ2 φ̄m(x) ,

(A.23)
i.e. the “diagonal” elements of the operators e−σ

µDµσ̄νDν/Λ2
and e−σ̄

µDµσνDν/Λ2
.

We now proceed with standard manipulations with σ-matrices, to show

−σµDµσ̄
νDν = −σµσ̄νDµDν

= −1

2
(σµσ̄ν + σν σ̄µ)DµDν −

1

2
(σµσ̄ν − σν σ̄µ)DµDν

= −ηµνDµDν − 2σµνDµDν

= −ηµνDµDν − σµν [Dµ, Dν ]

= −ηµνDµDν + iσµνFµν , (A.24)

where we have used in the last equality [Dµ, Dν ] = −iFµν , which can be
easily derived in the abelian case, but is true also in the non-abelian case as
one can argue by covariantization. Similarly, we get

− σ̄µDµσ
νDν = −ηµνDµDν − iσ̄µνFµν . (A.25)
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Now in the “trace” of e−σ
µDµσ̄νDν/Λ2

, the factor e−D
µDµ/Λ2

can be taken
out of the trace over spinorial indices, since it is proportional to the 2×2
identity. The other factor is eiσ

µνFµν/Λ2
and it does not involve differential

operators, hence it is straightforward to evaluate:

tr ei
σµνFµν

Λ2 = tr

(
I + i

σµνFµν
Λ2

− 1

2

σµνFµνσ
ρσFρσ

Λ4
+ . . .

)
= 2− 1

2Λ4
trσµνσρσFµνFρσ + . . . (A.26)

where the dots represent terms of higher order in the inverse cut-off.
Now recall that

trσµνσρσFµνFρσ = −FµνF µν − i

2
εµνρσFµνFρσ , (A.27)

so that we eventually have

tr ei
σµνFµν

Λ2 = 2 +
1

2Λ4
FµνF

µν +
i

4Λ4
εµνρσFµνFρσ + . . . (A.28)

Similarly

tr e−i
σ̄µνFµν

Λ2 = 2 +
1

2Λ4
FµνF

µν − i

4Λ4
εµνρσFµνFρσ + . . . , (A.29)

since tr σ̄µν σ̄ρσ has the opposite sign for the term proportional to εµνρσ.
We are now left to evaluate

∑
n φ
†
n e
−DµDµ/Λ2

φn. We rewrite it in Fourier
space, taking note that Dµ is replaced by i(kµ − Aµ), and we further Wick
rotate the expression:∫

d4k

(2π)4
e

(kµ−Aµ)(kµ−Aµ)

Λ2 = i

∫
d4kE
(2π)4

e−
k2
E

Λ2 −2
k
µ
E
Aµ

Λ2 +
AµAµ

Λ2 . (A.30)

We set Aµ = 0 in this computation, because we will soon see that subleading
corrections to the leading result are irrelevant. We are then left with four
Gaussian integrals that yield

i

∫
d4kE
(2π)4

e−
k2
E

Λ2 = i
Λ4

(4π)2
. (A.31)

The final result is thus∫
d4k

(2π)4
e

(kµ−Aµ)(kµ−Aµ)

Λ2 = i
Λ4

(4π)2

(
1 +O(Λ−2)

)
, (A.32)



170 APPENDIX A. ANOMALIES: A BRIEF INTRODUCTION

where we note that the O(Λ−2) terms are all real.
Putting everything together, the regularized expressions (A.23) are then

given by∑
n

φ†n(x) e−
σµDµσ̄

νDν

Λ2 φn(x) = i
Λ4

(4π)2

(
1 +O(Λ−2)

)
×

×
(

2 +
1

2Λ4
FµνF

µν +
i

4Λ4
εµνρσFµνFρσ + . . .

)
,∑

m

φ̄†m(x) e−
σ̄µDµσ

νDν

Λ2 φ̄m(x) = i
Λ4

(4π)2

(
1 +O(Λ−2)

)
×

×
(

2 +
1

2Λ4
FµνF

µν − i

4Λ4
εµνρσFµνFρσ + . . .

)
,

(A.33)

so that in the difference, all the terms cancel except the ones with the εµνρσ

tensors. Moreover, the latter terms are exactly finite when Λ → ∞. Hence
the regulator Λ can be safely removed from the difference, which reads∑

n

φ†n(x)φn(x)−
∑
m

φ̄†m(x)φ̄m(x) = − 1

32π2
εµνρσFµνFρσ . (A.34)

Our final result is thus

tr logJ + tr log J̄ = i

∫
d4x α(x)

{
− 1

32π2
εµνρσFµνFρσ

}
. (A.35)

In particular, we see that the index, that is computed when α is a con-
stant, is non-vanishing when εµνρσFµνFρσ integrates to a non-zero quantity
over all spacetime. This happens for instance when the gauge field has a
(topologically) non-trivial profile corresponding to an instanton. In such a
background, we have shown that there is an imbalance between chiral and
antichiral zero-modes.

Going back to our path integral derivation of the Ward identities, we have
taken care of the non-trivial variation of the measure. We now must add the
part that comes from the variation of the action under the chiral rotation,
namely the one that results in the conservation of the current. Summing the
two contributions, we obtain the “classical” relation∫

d4x α(x)

{
∂µJ

µ
ψ +

1

32π2
εµνρσFµνFρσ

}
= 0 , (A.36)
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which has to be understood under the path integral, and hence leading to
the following expression for the one-point function (at sources on)

〈∂µJµψ〉 = − 1

32π2
εµνρσFµνFρσ . (A.37)

Let us recall that the above expression is for one Weyl fermion.
Since Aµ, which appears in (A.37) through Fµν , is a source for Jµψ , the

above result indicates that the anomalous correlators are the ones with three
current insertions. Indeed, those correlators will still be non vanishing after
setting the sources to zero

δ2

δA2
〈∂µJµ〉

∣∣∣∣
A=0

6= 0 , (A.38)

where we allowed ourselves to be a bit schematic in the expression. It is
also straightforward to see that such a non-vanishing three-point function is
generated at one-loop, since we did not use anything else than the free part
of the theory of a Weyl fermion.

Taking a step back, we can realize that our path-integral based argument
did not actually rely on any perturbative expansion. Indeed, the result does
not depend on any coupling constant that the theory could have, including
the gauge coupling if the chiral symmetry ends up being gauged. It is then an
exact result. Since we just argued that it corresponds to a one-loop diagram,
usually called a triangle diagram because of its three insertions, it is often
said that the anomaly is a one-loop-exact quantity.

A.3 Generalizations and uses of anomalies

We would like to generalize the result of the previous section to any internal
symmetry, for instance a group with an arbitrary number of factors, both
abelian and non-abelian, and Weyl fermions in a generic representation.

We thus take in all generality a group G and denote the generators of its
algebra Ta. We further take them to be hermitian, Ta = T †a . The represen-
tation of G in which the Weyl fermions are is in general the direct sum of
different irreducible representations of G.

The infinitesimal transformation law of the fermions is

δψi = iαaTa
i
jψ

j , (A.39)
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where the indices i, j run over all the components of the representation. The
general expressions for the Jacobians are then

tr logJ = i

∫
d4x αa(x)

∑
n

φ†ni(x)Ta
i
jφ

j
n(x) ,

tr log J̄ = −i
∫
d4x αa(x)

∑
m

φ̄mi(x)Ta
i
jφ̄
†j
m(x) . (A.40)

The regularization procedure goes through as in the abelian case, one just
has to keep track of the Lie algebra generators, including the ones in the
definition of Aµ ≡ AaµTa. We end up with the result

tr logJ + tr log J̄ = i

∫
d4x αa(x)

{
− 1

32π2
εµνρσtrTaFµνFρσ

}
= i

1

2
trTa{Tb, Tc}

∫
d4x αa(x)

{
− 1

32π2
εµνρσF b

µνF
c
ρσ

}
,

(A.41)

where the trace is now with respect to the indices of the representation
of the Weyl fermions, and we have used Fµν = F a

µνTa and the fact that
εµνρσF b

µνF
c
ρσ = εµνρσF c

µνF
b
ρσ.

If we go back to an abelian group, G = U(1), and a Weyl fermion in a
representation of charge q, then we have simply T = q and we can replace
1
2
trTa{Tb, Tc} by q3. This indeed reduces to (A.35) when q = 1. An imme-

diate generalization is to a product of abelian groups, G =
∏

a U(1)a, and a
Weyl fermion with charges qa under the respective abelian factors. In this
case we have

1

2
trTa{Tb, Tc} = qaqbqc . (A.42)

For G a simple group (in the technical sense: a single non-abelian factor),
trTa{Tb, Tc} turns out to be an invariant of the representation:

1

2
tr rTa{Tb, Tc} = A(r)dabc , (A.43)

with dabc an invariant symmetric tensor of the Lie algebra of G, independent
of the representation. An important remark is that given a representation r,
its conjugate representation r∗ has generators −T ∗a = −T ta where in the latter
expression we denote the transpose of the (hermitian) generator. It is then
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straightforward to find that A(r∗) = −A(r). Hence for any self-conjugate
representation, A(r) = 0. Note that this is true also for reducible representa-
tions, possibly composed of irreducible representation that are (separately)
complex, such as r ⊕ r∗.

It is now a fact that the only simple groups allowing for complex (non-
self-conjugate) representations are the SU(N) groups with N ≥ 3. In other
words, one can see that it is only in the algebras of those groups that a non-
vanishing dabc exists. A simple example of the triviality of dabc is the one of
SU(2), for which the three generators, in the fundamental two-dimensional
representation, are proportional to the Pauli matrices τi, and for which

tr τi{τj, τk} = 2δjktr τi = 0 . (A.44)

For the other SU(N) groups, we can normalize dabc in such a way that
A(r) = 1 for the fundamental (N -dimensional) representation.

Let us now write the generic representation of the Weyl fermions as a
direct sum of irreducible representations, possibly with multiplicities. Then
the total anomaly is the sum of the contribution of each Weyl fermion in an
irreducible representation

1

2

∑
r

tr rTa{Tb, Tc} =
∑
r

A(r)dabc ≡ Atotdabc . (A.45)

For instance, for the abelian theory with ψ and χ oppositely charged under
U(1)V , we have

Atot =
∑
i

q3
i = (+1)3 + (−1)3 = 0 . (A.46)

In computing anomalies, one has to pay attention when G is a product of non-
abelian groups G1×G2, and the fermions are in a non-trivial representation
in both factors. Then when computing the anomaly with respect to the
generators of, say, G1, one has to take into account that the dimension of the
representation of G2 becomes the multiplicity of the representation under G1.
This technical remark becomes obvious as one starts to compute anomalies,
for instance in the Standard Model.

Until now, we have not really paid attention to whether the symmetry is
local (gauged) or global. We introduced a gauge field Aµ, but we posited that
it could just be a background field acting as a source for the Noether current.
We will now make the distinction, and discuss the physical significance of the
anomaly according to the global or local nature of the symmetries involved.
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Let us consider Weyl fermions in a representation of a product group G,
where some factors are eventually gauged while others remain global. As it
is now clear, anomalies are in practice trilinear in the symmetries, and we
can classify them according to the nature of each participating current at the
three vertices of the triangle, pictorially speaking.

If some factors of the symmetry group are gauged, we should first of all
inquire whether there is an anomaly when all three participating currents
are associated to gauge symmetries. If there is an anomaly ALLL

tot 6= 0 (where
the superscript L stands for local), it means that at the quantum level the
current coupling to the gauge fields is not conserved. In other words, the
associated Ward identities are not respected. This in turn implies that all
the properties that depend on the Ward identities, and that one uses when
renormalizing gauge theories, are not applicable. Eventually, the gauge the-
ory is non-renormalizable and, even more importantly, non-unitary because
the longitudinal and temporal components of the gauge fields are no longer
granted to decouple from the path integral. Hence we require that ALLL

tot = 0
in order for a theory to make sense at the quantum level.

We can now consider a mixed anomaly, with one global current and two
local currents, AGLL

tot . It appears that when asking if a global symmetry
survives quantization, this is the relevant anomaly to consider. Indeed, it
means that the current for the global symmetry is not conserved (the right-
hand-side of the conservation equation contains now dynamical fields). This
is not a problem for the consistency of the theory, but it is important when
composing the list of the symmetries of the quantum theory: anomalous
symmetries should not be accounted for. This anomaly is the one that has
been historically first discussed (under the name of the Adler-Bell-Jackiw
anomaly).

Note that since the total symmetry group is GGlobal×GLocal, the anomaly
is proportional to

1

2
tr rG⊗rLT

G
a {T L

b , T
L
c } = (tr rGT

G
a ) (tr rLT

L
b T

L
c ) , (A.47)

in self-explanatory notation. We immediately see that only abelian global
symmetries, for which the generators are not traceless, can be anomalous.

We could ask about the other mixed anomaly, AGGL
tot , which is relevant

only for abelian gauge groups, by a similar argument as just above. It turns
out that this anomaly has been scrutinized only very recently, and it involves
notions that go beyond the present set of lecture notes. Suffice it to say that
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it does not (and should not) occur in any of the theories that are usually
studied, both for phenomenological and formal purposes.

We are left then with the last possibility, namely AGGG
tot , the anomaly

involving only global currents. Such an anomaly does not harm the consis-
tency of a theory, and also does not prevent the conservation of the global
currents: in this this case, the right-hand-side of the conservation equation
contains only background fields, which are set to zero anyway at the end of
any computation of physical quantities.

Such a harmless anomaly can nevertheless be exploited in a very interest-
ing way, when strong dynamics is present. Suppose that an asymptotically
free theory has a global symmetry in the UV, with a non-trivial anomaly
AGGG

tot 6= 0. Then one can in principle gauge, possibly very weakly, this global
symmetry, at the price of adding to the theory some “spectator” fermions
which compensate the anomaly AGGG

spec = −AGGG
tot , but which otherwise are

completely decoupled from the original theory. Now the original theory flows
to strong coupling in the IR, and it reorganizes into effective degrees of free-
dom which are typically composites (such as the mesons and baryons of
QCD). If the global symmetry is unbroken in the IR, then it should still
be possible to gauge it in the same way as before. The spectator fermions
are unaffected by the RG flow of the original theory, and thus carry the
same anomaly AGGG

spec also in the IR. Since the RG flow should not render
this gauged symmetry anomalous (in other words, the anomaly is one-loop-
exact), we deduce that whatever the low-energy degrees of freedom are, they
have to match the global anomaly of the UV theory, AGGG

tot,IR = AGGG
tot,UV. This

reasoning is due to ’t Hooft, hence the procedure is called ’t Hooft anomaly
matching, and sometimes AGGG

tot anomalies are called ’t Hooft anomalies.

This is an important consistency check that a candidate low-energy theory
has to pass in order to be indeed connected to a UV theory. Alternatively, the
inability to satisfy ’t Hooft anomaly matching may indicate that a symmetry
must be necessarily broken in the low-energy theory.

There is an additional anomaly that one can contemplate, when con-
sidering coupling to gravity (or just metric fluctuations as sources for the
stress-energy tensor). We will not go into the details, but just mention that
the procedure is very similar to the one of Fujikawa for the gauge fields. One
has to consider a fermionic operator −iσ̄µDµ where now

Dµ = ∂µ −
i

2
ων̂ρ̂µ σν̂ρ̂ , (A.48)
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with ων̂ρ̂µ the spin connection (related to the Christoffel symbols Γρµν–see
any textbook on General Relativity for further details). Then by similar
manipulations one finds that

− σµDµσ̄
νDν = −2 + i(σ × Riemann) , (A.49)

where at this level of sketchiness we do not insist on the index structure of
the term involving the Riemann tensor. Eventually, we get to an anomalous
conservation equation which reads

∂µJ
µ ∝

∑
i

qi(Riemann)2 , (A.50)

where Jµ is the current associated to a (necessarily) abelian symmetry, under
which the Weyl fermions have respective charges qi. Note that on the other
hand, the coupling of fermions to gravity (in other words, their stress-energy
tensor) is universal, and this is the reason why the prefactor of this anomaly
only depends on the U(1) charges.

Abelian gauge theories must cancel this anomaly in order for them to
be consistently put in a (weakly) curved background, and possibly incorpo-
rated in a theory with dynamical (quantum) gravity. As for global (abelian)
symmetries, this is an additional consistency check, in the sense of ’t Hooft
anomaly matching, if the theory undergoes a change in degrees of freedom
from the UV to the IR, while preserving the U(1) symmetry.

Our last remark about anomalies is the following. Recall that the La-
grangian of a generic gauge theory contains the so-called Θ-term

L ⊃ − Θ

64π2
εµνρσF a

µνF
a
ρσ , (A.51)

where a is an index in the adjoint of, say, an SU(N) gauge group, and as
everywhere else in this appendix, we normalize the gauge fields in such a way
that there is no explicit coupling g in the covariant derivative (and hence in
the field strength). Recall that Θ is actually an angle, i.e. it is periodic
Θ ∼ Θ + 2π. This is because the quantity that it multiplies, when integrated
over all spacetime, can be shown to be an integer. Hence two values of Θ
that differ by a multiple of 2π lead to exactly the same path integral.

We immediately notice that the Θ-term looks very much like the anomaly.
More precisely, the relevant anomaly is a mixed one of the AGLL type, with
a global U(1) group under which the fermions ψri , in the representation ri
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of the gauge group, have charge qi. Under a global transformation ψri →
eiqiαψri , the fermionic path integral measure produces the following shift in
the Lagrangian

δL = α
∑
i

qi tr riTbTc
1

32π2
εµνρσF b

µνF
c
ρσ

= α
∑
i

qi T (ri)
1

64π2
εµνρσF a

µνF
a
ρσ , (A.52)

where we have used tr riTaTb = 1
2
T (ri)δab, normalized in such a way that

T (r) = 1 for the fundamental of SU(N).
Then we can see the anomalous shift of the Lagrangian as a (passive)

shift of Θ
δΘ = −α

∑
i

qi T (ri) . (A.53)

Alternatively, we can render the theory non-anomalous by accompanying a
chiral rotation by an active shift of Θ that compensates (A.53), and thus
makes the Lagrangian invariant.

Finally, note that (A.53) means that a discrete subgroup of the global
U(1) may be preserved. Let us call

∑
i qi T (ri) = p, and assume that p is

an integer (indeed, it is generally so, given our normalization for T (r) and
the fact that U(1) global charges should be integers). Then for α = 2π/p,
the shift of the Θ angle is by a multiple of 2π, and the path integral is
hence invariant. Therefore we conclude that Zp ⊂ U(1) is a non-anomalous
symmetry. The anomaly breaks the continuous U(1) to a discrete subgroup.
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