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1 Objective of the package

Computing conserved charges is one of the first thing one usually does when de-
scribing a new solution of gravity coupled to matter fields. With the increasing
interest in constructing new solutions of gravity for various reasons including field
theory/gravity correspondences [1, 2, 3, 4], quantization of three-dimensional grav-
ity [5, 6, 7, 8], etc , it is desirable to being able to define quickly and in a unified
way the conserved charges of these solutions. Since the definitions are known, the
charges can be computed with an appropriate algorithm in place of paper and pen-
cil. That’s the objective of this package, realized during step by step during the
research of the present author.

In Einstein gravity coupled to matter decaying fast at infinity, many methods ex-
ist to compute charges in asymptotically flat or asymptotically anti-de Sitter space-
times. For a sample of the litterature, see e.g. [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
When dealing with gravity with higher curvature corrections, or spacetimes with
unconventional asymptotics, a universal method to get the charges is useful. In
the approach of [19, 20, 21], conserved charges are defined as a difference of charge
between a reference solution, e.g. flat or anti-de Sitter space, and the solution of
interest. The only caveat for these methods is that it should exist a path of solutions
connecting the reference solution to the one of interest.

If one denotes by φ the set of fields of the theory considered, and ξ an (asymp-
totic) Killing vector of φ, the surface charges are integrals of a spacetime D−2 form
and one-form in field space kξ[δφ;φ],

Qξ[φ, φ̄] =
∫ φ

φ̄

∫
S
kξ[δφ;φ] (1)

on a D − 2 spacetime surface and along a path in field space between the reference
solution and the solution of interest. The package SurfaceCharges consists in a set
of procedures computing the components kµνξ [δφ;φ] of this D − 2 form,

kξ[δφ;φ] =
1

2(D − 2)!
kµνξ [δφ;φ]εµνα1...αD−2dx

α1 ∧ · · · ∧ dxαD−2 (2)

that should then be integrated in spacetime and in field space by the user.
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2 Description of the procedures

This package rests on Mathematica v7.0 or higher (compatibility with lower version
has not been tested) and the package Riemannian Geometry & Tensor Calculus
which can be downloaded at the following RG&TC homepage.

Currently, the theories that can be dealt with are

Einstein gravity:

ChargesEinstein[...]

Einstein-Maxwell theory minimally coupled to a scalar:

ChargesEinsteinMaxwellScalar[...]

Topologically Massive Gravity:

ChargesTMG[...]

Einstein gravity coupled to p-forms:

ChargesEinstein[...], ChargespForm[...]

Since the charge form kξ[δφ;φ] is a linear functional of the Lagrangian, one can
simply add up the contributions coming from the different pieces of the Lagrangian
to get to complete result. When the matter fall-offs quickly at infinity, it does not
contribute to the charges. In situations of interest in the adS/CFT correspondence,
this is not always the case and the matter should be taken into account in order to
obtain the correct finite charges.

The secondary procedures of the package include

- SeriesWithNTerms[...]

It is a variation of the function Series which computes a series expansion in an
asymptotic coordinate up to a given number of terms, in place of up to a given
order in the asymptotic coordinate. It is a substitute of Series when the metric has
components with very different fall-off behaviors.

- Cotton[...]

Computes the Cotton tensor in three-dimensional gravity. The commands

ChargesEinsteinAsympt[...], ChargesEinsteinMaxwellScalarAsympt[...],
ChargesTMGAsympt[...], ChargespFormAsympt[...], CottonAsympt[...]
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are redundant with ChargesEinstein[...], ... with the only difference that SeriesWith-
NTerms is used to expand asymptotically the fields introduced as an input of these
commands. They are useful to simplify the computations in the asymptotic context.
Note that the metric and the Christoffel symbols should be expanded asymptotically
independently.

- Commutator[...], Liediffd[...], Liediffdd[...], LiediffU[...]

Computes the commutator of two vector fields, the Lie derivative of a form, a two-
form and a vector (the notation follows the one of RGtensors, where covariant indices
are written as d, and contravariant as U).

- GenerateEpsilon[D]

for defining the global variable Epsilon which is the totally anti-symmetric numeri-
cally invariant pseudo-tensor in D dimensions.

Help All procedures contain a documentation that can be accessed in Mathematica
using the question-mark followed by the name of the procedure, e.g. type

?ChargesEinstein

for a description of the syntax associated with that command.

3 How to use the procedures in practice

Here is the sequence of operations required for computing charges illustrated on the
toy example of the Schwarzshild black hole:

1. Load the RG&TC package followed by the SurfaceCharge package.

2. Define a metric and a coordinate system in D dimensions. Define also the
matter fields Φm = (A, φ, . . . ): p-forms, scalar fields and so on if necessary.
For example,

metric = {{-1 + 2 M/r, 0, 0, 0}, {0, 1/(1 - 2 M/r), 0, 0}, {0, 0,
r^2, 0}, {0, 0, 0, r^2 sin^2(theta)}}

coord = {t,r,theta,phi}

3. Define a symmetry of the theory. For example, a symmetry of gravity coupled
to p-form field is a couple (ξ, λ) such that

Lξgµν = 0, LξA + dλ = 0. (3)

If the case of pure gravity, a symmetry is just a Killing vector. In the asymp-
totic context, these identities only hold asymptotically. In order to compute
the mass, define
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xi = {1,0,0,0}

4. Run

RGtensors[metric,coord,{0,0}]

to generate the Christoffel symbols and the Riemann tensor. In the asymptotic
context, let say r →∞ it is sufficient and more efficient to run

RGtensors[SeriesWithNTerms[metric,N,{r,infinity}],coord,{0,0}]

where N is the number of relevant terms to keep in the r expansion (typically
3).

5. Define the surface S of integration of the charges by specifying the two coor-
dinates that remain fixed on the surface. Typically, the sphere at infinity is
defined as the constant time and radius surface. In the coordinates {t, r, θ, φ},
the surface will be identified by

surface = {1,2}

6. Define the perturbed solution by varying all parameters of the solution that
are not fixed by the Lagrangian.

perturbation = D[metric,M] deltaM

7. Run the Charge procedures relevant for the Lagrangian considered: either
ChargeEinstein, ChargeEinsteinMaxwellScalar, ChargeTMG, ChargepForm or
a combination of them. There is no implementation of the Chern-Simons terms
for p-forms, so such terms should be added by hand if necessary. Here,

LocalVariationOfTheMass = ChargesEinstein[xi, perturbation, -1, surface]

gives the result

LocalVariationOfTheMass = sin(theta) deltaM / (4 Pi)

8. Integrate the result on the D − 2 surface. Note that the factor
√
−g has

been taken care of in the procedure ChargesEinstein and the other “Charges”
procedures.

VariationOfTheMass = Integrate[LocalVariationOfTheMass,
{theta,0,Pi},{phi,0,2 Pi}]
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9. If the integrability conditions are obeyed, one can integrate the linearized
charge in the phase space between the solution of interest and the background.

Mass = Integrate[VariationOfTheMass /. {deltaM -> 1}, M ]

to finally get

Mass = M

More examples can be found on the webpage.
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